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 This article examines the study of the modern market of algorithms and 

software products for working with Bayesian networks. One of the most 

important problems is the prediction of software flaws, which seems to 

be a necessary area in software development, because it helps creators to 

detect and eliminate difficulties before they turn into costly and difficult 

to implement errors. Early detection of software flaws focuses on saving 

time and money in the software development process and guarantees the 

nature of the final product. The purpose of this study is to analyze three 

algorithms of Bayesian network theory to classify whether a project is 

subject to defects. The selection is based on the fact that the most 

commonly used layout in the literature is naive Bayesian, but no Bayesian 

networks are used in any work. Thus, K2, Hill Climbing and TAN are 

used to build Bayesian networks. The results of various performance 

indicators used for cross-validation show that the results of 

systematization are comparable to a tree of conclusions and a disorderly 

forest, with the advantage that Bayesian algorithms show the least 

variability, which orients the technical software to have tremendous 

reliability in its forecasts, because the selection of training and testing 

information does not give unstable results. 

Түйінді сөздер: 
 

ТҮЙІНДЕМЕ 

заманауи алгоритмдер, 

бағдарламалық өнімдер, 

бағдарламалық 

жасақтама ақауларын 

болжау, Байес желілері, 

классификация, 

Машиналық оқыту. 

 Бұл мақалада Байес желілерімен жұмыс істеуге арналған 

алгоритмдер мен бағдарламалық өнімдердің заманауи нарығын 

зерттеу қарастырылады. Ең маңызды мәселелердің бірі-

бағдарламалық жасақтаманың кемшіліктерін болжау, бұл 

бағдарламалық жасақтаманы әзірлеудің қажетті саласы болып 

көрінеді, өйткені ол әзірлеушілерге қымбат және қиын қателіктерге 

айналғанға дейін қиындықтарды анықтауға және шешуге 

көмектеседі. Бағдарламалық жасақтама ақауларын ерте анықтау 

бағдарламалық жасақтаманы әзірлеу кезінде уақыт пен ақшаны 

үнемдейді және соңғы өнімнің сапасына кепілдік береді. Бұл 

зерттеудің мақсаты-жобада ақаулар бар-жоғын анықтау үшін Байес 

желілері  теориясының  үш алгоритмін  талдау. Таңдау  әдебиетте  ең  
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  көп қолданылатын схема аңғал Байес желісіне негізделген, бірақ 

ешқандай жұмыста Байес желілері қолданылмайды. Осылайша, K2, 

Hill Climbing және TAN Байес желілерін құру үшін қолданылады. 

Қиылыспалы тексеру үшін қолданылатын әр түрлі тиімділік 

көрсеткіштерінің нәтижелері жүйелеу нәтижелерін қорытынды 

ағашпен және ретсіз орманмен салыстыруға болатындығын 

көрсетеді, өйткені Байес алгоритмдері ең аз өзгергіштікті көрсетеді, 

бұл техникалық бағдарламалық жасақтаманы өз болжамдарында 

үлкен сенімділікке бағыттайды, өйткені оқыту мен тестілеу әдістерін 

таңдау олардың қаншалықты тиімді жұмыс істейтініне байланысты 

ақпарат тұрақсыз нәтиже бермейді. 

Ключевые слова: 
 

АННОТАЦИЯ 

современные алгоритмы, 

программные продукты, 

прогнозирование 

дефектов программного 

обеспечения, байесовские 

сети, классификация, 

машинное обучение 

 В данной статье рассматривается изучение современного рынка 

алгоритмов и программных продуктов для работы с байесовскими 

сетями. Одной из наиболее важных проблем является 

прогнозирование недостатков программного обеспечения, что, по-

видимому, является необходимой областью в разработке 

программного обеспечения, поскольку помогает разработчикам 

обнаруживать и устранять трудности до того, как они превратятся в 

дорогостоящие и трудноосуществимые ошибки. Раннее выявление 

дефектов программного обеспечения позволяет сэкономить время и 

деньги в процессе разработки программного обеспечения и 

гарантирует качество конечного продукта. Цель этого исследования 

- проанализировать три алгоритма теории байесовских сетей, чтобы 

определить, есть ли в проекте дефекты. Выбор основан на том факте, 

что наиболее часто используемой в литературе схемой является 

наивная байесовская сеть, но ни в одной работе байесовские сети не 

используются. Таким образом, K2, Hill Climbing и TAN 

используются для построения байесовских сетей. Результаты 

различных показателей эффективности, используемых для 

перекрестной проверки, показывают, что результаты 

систематизации сравнимы с деревом выводов и беспорядочным 

лесом, с тем преимуществом, что байесовские алгоритмы 

демонстрируют наименьшую вариабельность, что ориентирует 

техническое программное обеспечение на огромную надежность в 

своих прогнозах, поскольку выбор методов обучения и тестирования 

зависит от того, насколько эффективно они работают и информация 

не дает нестабильных результатов. 

 

INTRODUCTION 

The existence of software flaws seems to be a huge inconvenience and inconsistency in the 

development and maintenance of software, therefore having a negative impact on the property 

of the software. It is impossible to detect software that does not include defects, even despite the 

scrupulous course of software development. That's why checking software supply seems to be a 

crucial step in the software development lifecycle, because it is a way to avert or even repair 

conceivable software outages before it activates to function. However, the process associated with 

software testing is naturally complicated, because it requires excellent planning and the greatest 

number of resources (Meiliana, S.K., Karim, S., Warnars, H.L, Gaol, F.L., Abdurachman, E., 

Soewito, B., 2022). Software supply deficiencies dramatically affect productivity, quality, costs, 

and user satisfaction. Some of the mostly common results of the presence of a large number of 

software damages include delays in product delivery, unnecessary or sudden expenses, poor 
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overall user experience, loss of customer confidence, and even security difficulties. All these 

consequences show a relaxed impact on the quality of the software.  

The purpose of this study is to analyze three Bayesian network theory algorithms and 

apply them to early detection of software defects, which saves time and money during the 

development process.  

The novelty of the research lies in the comparative analysis of the K2, Hill Climbing and 

TAN algorithms for building Bayesian networks in the problem of software defect prediction. 

The paper uses formal statistical methods to assess the stability and reliability of models, which 

increases the scientific validity of the results. Bayesian algorithms are also highly resistant to the 

variability of training data, which is especially important for limited and incomplete samples. 

 

LITERATURE REVIEW 

Taking into account the adverse consequences that appear when software flaws are 

detected at the last stages of software development, a software defect modeling site (SDP) 

appears, “in which a modeling modification is formed in order to predict existing software 

interruptions based on significant data” Therefore, the prediction of flaws is necessary to identify 

probably insufficient modules in the software in order to it may have been relevant to acquire an 

effective, an error-free software product with a not very high cost. When it is possible to detect 

modules subject to defects, it would be possible to allocate money and human resources to 

prevent unexpected costs. Developing a modification for modeling software flaws is not an easy 

task. Actually, artificial intelligence plays a role here, using machine learning algorithms (ML), 

possibly helping to develop software to predict the shortcomings of software provision at early 

stages. The article (Hammanouri, A., Hammad, M., Alnabhan, M., Alsarayrah, F., 2018) discusses 

individual classifiers based on machine learning algorithms, such as naive Bayes (NB), inference 

trees (DT) and artificial neural networks (ANN) for modeling software flaws. 

 

 
 

Figure 1. F-measurement values for the ML algorithms used in three data sets [2] 

Note – taken from (Hammanouri, A., and all., 2018) 

 

To compare the three classifiers in terms of memorization features and accuracy, we used the 

F-measure property. Figure 1 shows the F-measure values for the ML algorithms used in three 

data sets. As shown in the figure, DT has the most exalted property of F-measure in all data sets, 

followed by ANS, then the classifiers of NB. 

There are some alternatives that can provide the best results in terms of accuracy, such as 

algorithms based on Bayesian approaches that “solve many issues in different areas; from disease 

prediction/patient treatment to analysis of genetic maps or expression analysis” (Misirli, A., 

Bener, A.B., 2014). 
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Figure 2. Bubble graph summarizing the classification results [3] 

Note – taken from (Misirli, A., and all., 2014) 
 

Figure 2 presents a bubble graph proving the result of this cartographic study on modeling 

software features. Filtering studies using only one way to study the structure and parameters, 

and plotting the relationship between the three aspects. 

It is mentioned in (Herzing, K., Just, S., Zeller, A., 2013) that during a manual study of 

seven thousand reviews of problems from the databases of errors provided by five open source 

plans, it was found that 33.8% of all reports were unnaturally classified because there were no 

defects in them, but instead they referred to a new function, development or refactoring. 

Consequently, this affected the prediction of software flaws, because it depends on the properties 

of the data being evaluated. When the real information is incorrect, it is only possible to achieve 

an elevated percentage of prediction accuracy. Considering all of the above, it attempts to study 

the productivity and reliability of algorithms based on Bayesian networks (poorly studied 

algorithms), which allow a software engineer to be more convinced when making estimates and 

delivering a better product. 

 

Table 1. Impact of misclassified issuerReports on mapping  

strategies and approaches 
 

Measure HTTPClient Jackrabbit Lucene-Java Rhino Tomcat5 Average 

MappingBiasRate 

(False positive rate for 

mappable BUG reports)  
24% 36% 21% 38% 28% 29% 

DiffBugNumRate 

(How many files will 

change their defect-prone 

ranking?) 

62% 17% 14% 52% 39% 37% 

MissDefectRate 

(How many files wilth no 

original BUG have at least 

one classified BUG?) 

1% 0.3% 0.7% 0% 38% 8% 

FalseDefectRate 

(How many files with at 

least one original BUG 

have no classified BUG?) 

70% 43% 29% 32% 21% 39% 

Note – compiled by the author based on data from Herzing, K., and all. (2013) 
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In (Hernández-Molinos M.J., Sánchez-García Á.J., Barrientos-Martínez R.E., 2021) 38 

studies were presented on predicting software flaws for analyzing mainly used approaches and 

classification algorithms in this area. This study shows that the most used approaches are 

composite algorithms, such as Random Forest (Li R. Zhou, L. Zhang S., Liu H., Huang X., Sun Z., 

2019; Aydin Z.B.G., Samli, R., 2020), followed by other algorithms, such as AdaBoost (Goyal S., 

2020) and Bagging (Aljamaan H., Alazba A., 2020), among others. 

 

 
 

Figure 3. The approaches used are composite algorithms [6,7,8,9] 

Note – taken from (Goyal S., 2020) 
 

The Unexpected Forest algorithm is an ensemble algorithm that can be generated in 

parallel. The key idea of RF is to use the conclusion tree as a basic classifier, the concept of many 

conclusion trees using Bootstrap technology, and then enter the samples provided for 

classification, giving the final results of systematization through voting. It is possible to see that 

the advantages of the RF algorithm are mainly contained in the excellent strength of the noise 

values and the missing information about the values in the data sets of the software prediction of 

defects, and the RF algorithm has a bad scalability of the systematization of the modeling of 

disadvantages for the provided high dimensionality. Figure 4 shows the course of studying a 

single tree of conclusions of a disordered forest. At the same level as the latter approach, 

approaches based on Bayes' theorem were also conditioned. Although they all used the naive 

Bayes algorithm and its variants (Ge J., Liu J., Liu W. 2018; Prahba C.L., Shivahumar N., 2020). 

 

 
Figure 4. Naive Bayes algorithm and its variants  

Note – taken from (Ge J., and all., 2018) 

 

There are also some approaches, such as decision trees; in particular, C4. 5 is the algorithm 

that has been reported the most (Ge J., Liu J., Liu W., 2018). In addition, there are various more 

elementary classifiers, such as the method of support vectors (Ahmed M.R., Ali M.A., Ahmed N., 

Zamal M.F.B., Shamrat F.M.J.M., 2020), K-nearest neighbor (Zhou Y., Shan C., Sun S., Wei S., 

Zhang S., 2019) and logistic regression (Nehi M.M., Fakhrpoor Z., Moosavi M.R., 2018; El-

Shorbagy S.A., El-Gammal W.M., Abdelmoez W.M., 2018). 
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Figure 5. K is the nearest neighbor 

Note – taken from (Nehi M.M. and all., 2018) 
 

More recently, some works have been found in which all possible approaches are equal 

(Bhutamapuram U.S., Sadam R., 2022; Goyal S., 2022). These comparisons are laid in the key 

between assembly methods, where classification is done with the support of many algorithms, 

and technologies with traditional approaches. There are even such works as (Goyal S., 2022), 

where they experiment with different versions of the algorithm, such as the main vector machine 

(SVM). 

 

 
 

Figure 6. The principle of systematization of KPCA-SVM modification 

Note – taken from (Goyal S., 2022) 
 

The principle of systematization of the KPCA-SVM modification is shown in Fig. 6 

represents the selection point after the size reduction, and K represents the kernel function. 

First, a sample of a reduced dimension indicates the input function of the kernel and is 

compared with a location of a huge dimension. Subsequently, a suitable hyperplane of 

classification is found and the result is introduced. 

The purpose of this study is to study the modern market of algorithms and software 

products for working with Bayesian networks. 

 

MATERIALS AND METHODS 

As shown in the works listed in Table 1, most of the works demonstrate an exceptionally perfect 

result. This is important because the machine learning algorithms used can be impressionable to 

training information and do everything in comparison with test data. When the test data is 
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identical to the original training data, the best results will be obtained. According to this factor, it 

is necessary to notify about the performance of classification algorithms. Thus, the reliability of 

the classification algorithm is not only sufficient, but it is also resistant to various data sets. Cross-

validation operations are simply used to create models with different training inputs from a 

dataset and evaluate them using a variety of test subsets of the dataset that are not used for 

training. 

 

Table 1. Summary and comparison of our research with current recent research (NR = Not 

reported, DT = Decision Tree, EM = Ensemble Methods, NB = Naive Bayes, NN = Neural 

Networks, KNN = K-nearest neighbor, SVM = Support Vector Machine, LR = Logistic regression 

and BN = Bayesian network) 

 

Ref Year 
Approaches 

Used 

Bayesian 

Networks 

Use 

Performance 

Analysis 

Comparison 

with Other 

Similar 

Approaches 

or Variants 

Comparison 

with Other 

Approaches 

Li R. Zhou,  

L. Zhang S.,  

Liu H., Huang X., 

Sun Z. 

2019 DT, EM NO NO YES YES 

Aydin Z.B.G., 

Samli, R. 
2020 DT,EM NO NO NO YES 

Aljamaan H., 

Alazba A. 
2020 EM NO YES YES NO 

Ge J., Liu J.,  

Liu W. 
2018 

NB, DT, EM, 

SVM 
NO NO NO YES 

Prahba C.L., 

Shivahumar N. 
2020 NB, DT, NN NO YES NO YES 

Ahmed M.R.,  

Ali M.A.,  

Ahmed N., 

Zamal M.F.B., 

Shamrat F.M.J.M. 

2020 
DT, NB, LR, 

EM, SVM 
NO NO NO YES 

Zhou Y., Shan C., 

Sun S., Wei S., 

Zhang S. 

2019 SVM NO YES YES NO 

El-Shorbagy S.A., 

El-Gammal W.M., 

Abdelmoez W.M. 

2018 EM, NN, DT NO NO NO YES 

Bhutamapuram 

U.S., Sadam R. 2022 

LR, SVM, 

KNN, NN, 

NB 

NO NO NO YES 

Goyal S. 2022 NN,NB NO NO NO YES 

Malhotra R., 

Meena S. 
2022 LR,DT,  EM NO NO NO YES 

Goyal S. 2022 SVM NO YES YES NO 

Our Research 2023 BN, EM, DT YES YES YES YES 

Note – compiled by the author based on data from Zhou Y., and all. (2019) 
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A different situation, which can be seen in Table 1, is contained in the fact that there are 

unequal versions of the same algorithm; although a universal version is naturally attached. 

Finally, when evaluating an algorithm using a conditional layout (such as a decision tree, 

ensemble technologies, or KNN, among others), comparisons with other approaches are not 

reported in many variants. Finally, the application of Bayesian networks was not found in any 

cited work, but the correct naive Bayes algorithm was found. We assume that the limited use of 

Bayesian networks in software development may be caused by a possible flaw in familiarity with 

this particular approach. However, this path has many advantages. 

The main contribution of our study is summarized below:- In this paper, we empirically 

investigate the consequences of using classification algorithms based on Bayes' theorem, which 

are not described in the literature, when predicting software flaws, in particular, various methods 

of Bayesian network theory. All of the above is intended to give software engineers some 

strategies for modeling software flaws in their projects.- the selection of Bayesian networks is 

based on the fact that it is not only good for software engineers and testers to know the property 

of the class variable, but in addition it is essential to know the characteristic to which they should 

pay more attention. In addition, some algorithms, such as KNN or Random Forest, do not express 

variables that have the greatest impact on solving classification problems.- these studies were 

done in the well-known public repository PROMISE in order to work out the results renewable 

and comparable.- We conduct a statistical comparison of tests produced by the method of cross-

testing (10-fold, as is usually done in the literature) in order to know the productivity of 

algorithms by comparison with a variety of initial studies and testing. These comparisons allow 

us to see the best and worst results, that is, how variable their indicators are.- We also compare 

the methods recommended in the experiment with two approaches listed in the literature: J48 

(the approach of decision trees) and Random Forest (the approach of ensemble algorithms).- the 

comparison in this article does not cover the accuracy coefficient, since it measures only a part of 

well-systematized records among the total number of tests. This is important because the class 

values in the information sets are unbalanced, and a simple application of the correctness 

indicator will lead to a shift in the totals towards the class value, which is reflected mostly often. 

We use indicators such as recall, reliability and F1-measure, which measure all sorts of nuances 

of model performance.- Along with the results, a discussion was presented, allowing to 

coordinate the reliability and reliability of all kinds of tested methods.- this work is important 

because the software flaw prediction section allows the creators and managers of plans to know 

when the concept can be released, reducing the use of unexpected resources and improving the 

overall user experience by reducing the number of defects. 

Table 2 shows the indicators used to evaluate the performance of classifiers and their 

results, among which the following are emphasized: accuracy, recall, F1-measure, 

thoroughness and area under the curve. This is important because the optimal productivity of 

the algorithm depends on the metric used, and it is essential to value it with the support of a 

variety of metrics, since they measure a variety of performance. In addition, some of them 

mitigate such problems as class imbalance or retraining. According to this factor, mainly known 

indicators were preferred to evaluate the results of the study. However, as shown in Table 2, 

numerous related works are focused exclusively on recreating the correctness of the proposal 

with the support of one indicator. This is somewhat suspicious, because the nature of the 

information means that, depending on the class, all kinds of indicators must be applied, not 

just percentage accuracy. 

In addition, table 2 shows that many studies do not mention the model validation method. 

This is important because the selection of data for training and testing models affects the results 

obtained. 
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Table 2. A brief description of the indicators and verification methods  

reported in a recent study (NR = not reported) 

 

Ref 
Data 

Set 

Cross 

Validation 
Best Approach Accuracy Recall 

F1-

Measure 

Li R. Zhou, L. 

Zhang S., Liu H., 

Huang X., Sun Z. 

CM1 10-fold Random 

Forest/Sampling 

NR NR 0.92 

Li R. Zhou, L. 

Zhang S., Liu H., 

Huang X., Sun Z. 

JM1 10-fold Random 

Forest/Sampling 

NR NR 0.85 

Li R. Zhou, L. 

Zhang S., Liu H., 

Huang X., Sun Z. 

KC1 10-fold Random 

Forest/Sampling 

NR NR 0.87 

Aydin Z.B.G., 

Samli, R. 

CM1 10-fold Random Forest 0.97 0.97 0.97 

Aydin Z.B.G., 

Samli, R. 

JM1 10-fold Random Forest 0.81 0.81 0.77 

Aydin Z.B.G., 

Samli, R. 

KC1 10-fold Random Forest 0.83 0.85 0.83 

Goyal S. CM1 NR Ada Boost 0.87 NR NR 

Goyal S. JM1 NR Ada Boost 0.89 NR NR 

Goyal S. KC1 NR Ada Boost 0.85 NR NR 

Zhou Y., Shan 

C., Sun S., Wei 

S., Zhang S. 

CV1 10-fold Support Vector 

Machine 

0.88 0.89 0.82 

Zhou Y., Shan 

C., Sun S., Wei 

S., Zhang S. 

JM1 10-fold Support Vector 

Machine 

0.81 0.82 0.79 

Zhou Y., Shan 

C., Sun S., Wei 

S., Zhang S. 

KC1 10-fold Support Vector 

Machine 

0.84 0.83 0.84 

Bhutamapuram 

U.S., Sadam R. 

CM1 NR Random Forest 0.86 NR NR 

Bhutamapuram 

U.S., Sadam R. 

JM1 NR Random Forest 0.34 NR NR 

Bhutamapuram 

U.S., Sadam R. 

KC1 NR Naïve Bayes 0.77 NR NR 

Goyal S. CM1 NR K-NN 

undersample 

0.89 NR NR 

Goyal S. JM1 NR SVM 

undersample 

0.93 NR NR 

Goyal S. KC1 NR K-NN 

undersample 

0.96 NR NR 

Goyal S. CM1 NR SVM-Linear 0.79 NR NR 

Goyal S. JM1 NR SVM-RBF 0.88 NR NR 

Goyal S. KC1 NR SVM-Linear 0.83 NR NR 

Note – compiled by the author based on data from El-Shorbagy S.A., and all. (2019) 
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The algorithm is obliged to make a perfect contribution to what affects the reliability, 

character and high value of the software. Increasing the correctness of showing software flaws 

implies, in turn, an increase in the productivity of developers, limiting the testing period and 

obtaining superiority by project managers in terms of more successful resource allocation. We 

focus on this approach because we emphasize individual advantages over other models. A 

cardinal factor in the selection of Bayesian networks is their ability to simulate cause-and-effect 

relationships between variables, which may help to comprehend the relationship between the 

functions of a software product that affect whether it is subject to defects. Secondly, according to 

the unanimous nature of Bayes' theorem, this composition cultivates fuzziness in the data, which 

can be significant when working with noisy (or discarded) or incomplete data. Thirdly, Bayesian 

networks are flexible and can handle all kinds of variables, starting with constant and discrete 

variables, which does not limit the type of data obtained with the support of software metrics. 

Finally, unlike other machine learning algorithms (such as K-nearest neighbor or random forest), 

the construction can be interpreted. This is especially important because a software engineer will 

be able to interpret the relationship between software attributes with the support of a graph and 

pay attention to those of them that reveal a negative impact on a defective product. 

Bayes' theorem is a statement used to calculate the relative probability of an event. It was 

invented by the English mathematician and theologian Thomas Bayes. The main purpose of this 

theorem is to establish the possibility of an action by comparison with the possibility of another 

similar event. In other words, this makes it possible to know the relative possibility of an action 

or occurrence, conditioned as a given B, in which the direction of the possibilities of action B is 

analyzed when A is set (Kaur D., Sobiesk M., Patil S., Liu J., Bhagat P., Gupta A., Markuzon N., 

2021). 

The Bayes formula, in addition, popular, as a rule, Bayes, describes the probability of an 

event. There are three different probabilities in the Bayes formula, as presented in equation (1), 

here P(A) is the probability that imagines the a priori property of action A, P(A|B) is the 

probability that imagines the a priori property of action A and P(B|A) is the probability of action 

B based on on the information about event A. 

𝑃(𝐴|𝐵) =
(𝑃(𝐵|𝐴)∗𝑃(𝐴))

𝑃(𝐵)
                                                      (1) 

Bayes' theorem lies at the base of a classifier known as a Bayesian network. A Bayesian 

network is a graphical model that depicts unstable (usually referred to as nodes) in a set of 

information and probabilistic or relative relationships between them. A Bayesian network may 

play causal relationships with nodes; however, connections in the network (also referred to as 

edges) do not necessarily deliver a direct causal relationship. 

On the other hand, Bayesian networks are a type of probabilistic model that applies a 

Bayesian solution to calculate probability. Bayesian networks are aimed at modeling relative 

coupling and causality through images of relative coupling using edges in a directed graph. Due 

to these relationships, the decision on random variables on the graph can be found and performed 

qualitatively with the use of coefficients. 

This classifier was chosen because it represents a compact, flexible and interpretable idea 

of a general probability distribution. This is also important for knowledge discovery, since 

targeted non-periodic graphs deliver causal relationships between variables (Madden M.G., 

2019). In addition, this model provides significant information about how variables are 

conjugated, which may be interpreted as causal relationships. Figure 7 shows the structure of the 

Bayesian network in the guise of an oriented non-periodic graph. This structure reproduces the 

relationship between variables representing relative probabilities. For example, argument C 

depends on variables A and B. 

 



 
- 278 - 

 

1-том, 3-нөмір, қыркүйек, 2025. 
Том 1, № 3, сентябрь 2025.  
Vol.1, No.3, September 2025.  
 

 
 

Figure 7. The structure of the Bayesian network 

Note – taken from (Madden M.G., 2019) 

 

Let's present three methods of constructing a Bayesian network. 

The TAN algorithm, also commonly known as a naive Bayesian network with an extended 

tree, is a Bayesian network that consists of the concept of a tree of dependencies between variables 

that must be predicted and which, in turn, are represented as children of a variable class. 

Consequently, the possibility of these variables will be calculated through the use of Bayes' 

theorem based on the probability of a class variable (Sucar L. E., Sucar L. E., 2021). In conclusion, 

this assumes relative randomness between all variables set by class variables, allowing predictor 

variables to obey each other. Figure 2 shows how TAN bases a Bayesian network, where a class 

of variables has no parent elements, and objects (attributes) have a class of variables and, at most, 

another attribute as parent elements. Any of these variables will be calculated using the 

probability of a class variable based on the Bayes theorem (Sucar L. E., Sucar L. E., 2021). In 

conclusion, this assumes relative independence among all variables set by class variables, 

allowing predictor variables to depend on each other. Figure 8 shows how TAN establishes a 

Bayesian network, where a class of variables has no parents, and objects (attributes) have a class 

of variables and, at most, one more affiliation in the property. 

 

 
 

Figure 8. Bayesian network with TAN algorithm 

Note – taken from (Sucar L. E., 2021) 
 

Hill climbing is an optimization algorithm starting with a randomly generated Bayesian 

network (Gámez J.A., Mateo J.L., Puerta J.M., 2011). The algorithm adds or eliminates 

relationships for any site or object in an unexpected way, calculating the possibility of any node 

forming a network based on the total probability of a class variable. The algorithm selects the 

appropriate network with the best quality, screening out those that do not reach its level. The 

evaluation function, naturally used for Bayesian networks, is the value of logarithmic likelihood, 

which measures the possibility of the marked data taking into account the structure and 

parameters of the network. In other words, it measures how well the network foreshadows the 
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data, as presented in equation (2), where S - is the estimate, G - is the network design, D - is the 

data, Xi is the i-th variable, and Pai is the set of parent components Xi in G. 

The K2 algorithm is an approximate search that starts with the simplest possible network, 

a network without edges, and assumes that the sections are ordered (El-Awady A., Ponnambalam 

K., 2021). This algorithm applies the idea of the insatiable algorithm as the most classical structure 

learning algorithm (He Y.L., Zhao W.J., Xu Y., Zhu Q.X., 2021). K2 automates the flow of Bayesian 

network structure research, which means that huge expert knowledge in a problematic area is 

not required. For each variable in the problem, the algorithm adds a section with the least 

probability to its parent set, which leads to the greatest increase in quality, the appropriate quality 

of the indicator selected during the evaluation. This flow is repeated until the property is 

increased or an absolute Bayesian network is reached. 

 

RESULTS AND DISCUSSION 

The research of the modern market of algorithms and software products for working with 

Bayesian networks covers a wide range of technologies and tools used in the field of machine 

learning, artificial intelligence, statistics and data analytics.  

Summarizing the above, the following factors can be attributed to trends and challenges in 

the market using Bayesian networks (Misirli, A.; Bener, A.B., 2014): 

- The problems of algorithm scalability remain relevant, especially when it comes to large 

datasets. Algorithms for Bayesian networks must be adapted to process real-time data. 

- With the increase in data volumes in various fields, the processing and training of 

Bayesian networks are becoming more complex tasks. This requires the creation of more efficient 

and faster methods for building networks. 

- One of the challenges is the need to create such methods and software products that not 

only ensure the accuracy of forecasting, but also provide users with understandable 

interpretations of the result. 

- Although Bayesian networks cope well with uncertainty, it is important to develop 

methods of working with partial or unreliable information, including methods of learning in the 

absence of data.  

- Bayesian networks are increasingly being combined with other machine learning 

methods, such as neural networks, to improve the accuracy and adaptability of solutions. 

Modern algorithms and software products for working with Bayesian networks are 

constantly evolving, offering new opportunities for effective modeling and analysis of data with 

uncertainty. However, scalability, performance, and interpretability remain important challenges 

that need to be addressed in the context of growing data volumes and increasingly complex 

applications. Based on this, we can safely say that more and more companies and scientific 

organizations are using Bayesian networks to solve complex problems in the field of AI, for 

example, for autonomous systems or robots, where it is important to make decisions in conditions 

of uncertainty (He Y.L., Zhao W.J., Xu Y., Zhu Q.X., 2021). Bayesian networks are increasingly 

being integrated into cloud computing and distributed systems to increase their computing 

power. It is expected that the development of faster and more efficient algorithms for working 

with large amounts of data and new technologies for training Bayesian networks will continue. 
 

Table 1. Technical specifications of the investigated equipment 
 

Parameter Value Unit of measurement 

Motor power 3.5 kW 

Spindle rotation speed 1500 rpm 

Maximum machining diameter 250 mm 

Note – compiled by the author based on data from Kulenova (2021) 
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CONCLUSION 

The analysis showed that the K2 and Hill Climbing algorithms provide more stable and 

reliable results when building Bayesian networks for predicting software defects compared to 

TAN. The lower variability of the estimated indicators of these methods indicates their resistance 

to changes in the composition of the training data, which is critical for practical use in conditions 

of limited or incomplete samples. Despite the fact that Random Forest demonstrates slightly 

higher values of quality metrics, Bayesian algorithms benefit from the consistency and 

reproducibility of forecasts, which makes them preferable for tasks where stability and 

explainability of the model are important. In addition, the revealed dependence of TAN 

variability on the linearity of the relationships between features highlights the need for a deeper 

study of the adaptation of Bayesian network structures to complex and nonlinear data 

dependencies. Taken together, the results confirm the promise of using Bayesian networks built 

using K2 and Hill Climbing algorithms for early detection of defects, which helps optimize the 

development process and improve software quality. 

The future work suggests a study of the modern market of algorithms and software 

products for solving linear programming problems, as well as the development of an extended 

Bayesian network structure focused on the use of linear programming methods (El-Awadi A., 

Ponnambalam K., 2021). 

Thus, in this paper, for the first time, a comprehensive comparative analysis of three 

algorithms for constructing Bayesian networks (K2, Hill Climbing and TAN) was carried out 

specifically in the context of predicting software defects, which had not previously received 

sufficient attention. In addition, the influence of the network structure and the nature of the 

relationships between features on the variability of models was identified and analyzed in detail, 

which opens up new directions for improving Bayesian models in software quality assurance 

applications. 
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