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SPATIO-TEMPORAL ANALYSIS OF AIR QUALITY AND NOISE POLLUTION:  

ADVANCED STATISTICAL METHODS AND PREDICTIVE MODELING 
 

АУА САПАСЫ МЕН ШУЫЛДЫҢ КЕҢІСТІК-УАҚЫТТЫҚ ТАЛДАУЫ:  
ОЗЫҚ СТАТИСТИКАЛЫҚ ӘДІСТЕР ЖӘНЕ БОЛЖАМДАУ МОДЕЛЬДЕРІ 

 

ПРОСТРАНСТВЕННО-ВРЕМЕННОЙ АНАЛИЗ КАЧЕСТВА ВОЗДУХА И УРОВНЯ ШУМА: 
СОВРЕМЕННЫЕ СТАТИСТИЧЕСКИЕ МЕТОДЫ И ПРОГНОЗНЫЕ МОДЕЛИ 

 

Abstract. Urban environments face escalating challenges from air pollution, which poses significant risks 
to public health and urban sustainability. Airborne pollutants such as PM2.5 and NO2 contribute to 
respiratory and cardiovascular diseases, emphasizing the need for high-resolution monitoring and predictive 
analysis. This study employs mobile sensor networks, specifically data collected from postal vans in 
Antwerp, Belgium, to analyze spatio-temporal patterns of air pollution over a five-year period (2018–2023). 
By integrating advanced statistical techniques and machine learning models, specifically Long Short-Term 
Memory (LSTM) networks, this study identifies pollution hotspots, uncovers temporal dynamics, and predicts 
future pollution levels. The findings reveal significant seasonal and spatial variations, with industrial zones 
exhibiting the highest concentrations. Predictive modeling achieved high accuracy, with LSTM models 
attaining an R² of 0.92 for PM2.5 predictions. This research highlights the utility of mobile sensors in urban 
environmental monitoring and provides actionable insights for policymakers to mitigate urban air pollution. 

Keywords: air quality, noise pollution, spatio-temporal analysis, predictive modeling, machine learning, 
urban ecosystems. 

 
Аңдатпа. Қалалық ортадағы ауаның сапасының нашарлауы адам денсаулығына және қала 

экожүйелеріне елеулі қауіп төндіреді. PM2.5 және NO2 сияқты ластаушы заттар тыныс алу және 
жүрек-қантамыр жүйесі ауруларына ықпал етеді, бұл ауаның ластануына қарсы тиімді шешімдерді 
талап етеді. Бұл зерттеуде Антверпен қаласында (Бельгия) пошта көліктеріне орнатылған 
мобильді сенсорлардан бес жыл (2018–2023) ішінде жиналған мәліметтерді пайдаланып, ауаның 
сапасының кеңістік-уақыттық заңдылықтары талданады. Ұзақ қысқа мерзімді жады (LSTM) 
желілерін қоса алғанда, озық статистикалық және машиналық оқыту модельдері қолданылды, 
нәтижесінде PM2.5 деңгейін болжауда R² = 0.92 көрсеткішімен жоғары дәлдікке қол жеткізілді. 
Зерттеудің нәтижелері қалалық ортаны басқаруда қолдануға болатын маусымдық және кеңістік 
заңдылықтарын айқындады, бұл саясаткерлерге ауаның ластануын азайтуға көмектеседі 

Түйін сөздер: ауа сапасы, шуыл ластануы, кеңістік-уақыттық талдау, болжамдау модельдеу, 
машиналық оқыту, урбанизация. 

mailto:ssrakhmetulayeva@gmail.com
mailto:d.yedilkhan@astanait.edu.kz


201 
№ 1, 2025                                                                                                                                «ШҚТУ ХАБАРШЫСЫ»                                                                                            

 
 
Аннотация. Ухудшение качества воздуха в городских условиях представляет значительные 

риски для здоровья населения и экосистем. Такие загрязнители, как PM2.5 и NO2, связаны с 
респираторными и сердечно-сосудистыми заболеваниями, что требует разработки эффек-
тивных мер по борьбе с загрязнением воздуха. В данном исследовании анализируются 
пространственно-временные закономерности загрязнения воздуха на основе данных, собранных 
с мобильных сенсоров, установленных на почтовых автомобилях в Антверпене (Бельгия), за 
пятилетний период (2018–2023). Были применены современные статистические методы и 
модели машинного обучения, включая сети долгой краткосрочной памяти (LSTM), которые 
продемонстрировали высокую точность прогнозирования уровня PM2.5 (R² = 0.92). Результаты 
исследования выявили сезонные и пространственные закономерности, которые могут быть 
использованы для разработки стратегий управления городским воздухом. 

Ключевые слова: качество воздуха, шумовое загрязнение, пространственно-временной 
анализ, прогнозное моделирование, машинное обучение, урбанизация. 

 

Introduction. The degradation of air quality and the rise in noise pollution are increasingly 

critical challenges that threaten human health, urban ecosystems, and overall quality of life. In 

rapidly urbanizing areas, industrial expansion, vehicular traffic, and population density 

significantly contribute to environmental stress. Air pollutants such as PM2.5, PM10, NO2, and 

CO2 are major contributors to health problems, including respiratory disorders, cardiovascular 

diseases, and premature mortality. Prolonged exposure to fine particulate matter like PM2.5 has 

been directly associated with chronic conditions such as asthma and bronchitis, while pollutants 

like NO2 and PM10 exacerbate hypertension and arterial inflammation, increasing the risk of 

heart attacks. The global health burden of air pollution is substantial, with the World Health 

Organization (WHO) estimating that millions of premature deaths annually are linked to poor air 

quality. Beyond its impact on human health, degraded air quality also accelerates biodiversity 

loss, disrupts urban microclimates, and intensifies global warming by contributing to urban heat 

islands and climate instability. 

Noise pollution, another pervasive issue, stems from sources such as traffic congestion, 

industrial machinery, and urban construction. While it does not manifest visibly, its impacts on 

human health and well-being are profound. High levels of noise interfere with cognitive functions, 

impairing memory, attention, and learning, especially among children. Chronic exposure to 

excessive noise induces stress, elevates cortisol levels, and contributes to the development of 

anxiety and hypertension. Moreover, noise disrupts sleep patterns, leading to fatigue, reduced 

productivity, and long-term health complications. The ecological effects of noise pollution are 

equally alarming, as it disrupts wildlife communication, breeding behaviors, and habitat selection, 

further complicating urban environmental dynamics. 

Urbanization has exacerbated these issues by altering the natural balance of ecosystems. 

Increasing urban density results in higher emissions from vehicles and industries, while urban 

sprawl often replaces natural green spaces with impervious surfaces. This replacement eliminates 

essential buffers that mitigate the effects of pollution. The dual pressures of air and noise pollution 

create complex spatial and temporal variability in environmental conditions, requiring innovative 

tools for monitoring and prediction. 

Although advancements in environmental monitoring technologies have improved data 

availability, significant gaps remain in how these data are analyzed and applied to policymaking. 

Current approaches often treat air quality and noise pollution as separate phenomena, analyzing 

them in isolation without acknowledging their shared drivers or interactions. This fragmented 

perspective undermines the ability to understand their cumulative impacts on urban environments. 

Moreover, traditional analytical models typically focus on either spatial or temporal dimensions, 

rarely integrating both to account for the multifaceted nature of urban environmental challenges. 

While time-series models capture temporal dependencies, they often neglect spatial variability, 

and spatial models, in turn, fail to address dynamic temporal patterns. 
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The limitations of traditional predictive models exacerbate these challenges. Models like 

regression and ARIMA, while useful for linear trends and short-term predictions, lack the capacity 

to handle the non-linear, evolving trends characteristic of air and noise pollution. Furthermore, 

the few studies that attempt to address both pollutants simultaneously often rely on simplified 

statistical methods, which do not leverage the power of machine learning to uncover hidden 

patterns and relationships. The lack of integrated approaches limits the capacity to generate 

actionable insights for urban management, leading to inefficiencies in policy implementation and 

resource allocation. 

To tackle these interconnected issues, the primary objective of our research is to develop and 

validate a spatio-temporal forecasting model that jointly analyzes air pollution (PM2.5, NO2) and 

noise pollution in an urban setting. This model aims to account for seasonal effects, local land use 

characteristics, and mobile sensor data to capture micro-scale variations. We propose that Long 

Short-Term Memory (LSTM) networks, given their aptitude for modeling non-linear 

dependencies and long-range temporal contexts, will outperform conventional methods like linear 

regression and ARIMA. By integrating high-resolution data from postal vans and fixed 

monitoring stations, we expect to reveal novel seasonal insights, identify hotspots, and provide 

policymakers with a more robust evidence base for effective mitigation strategies. This holistic 

approach underscores the study’s scientific novelty, as it combines state-of-the-art machine 

learning with multi-pollutant, multi-source data for an enhanced urban environmental analysis. 

Literature review. Manuscript text manuscript text manuscript text  manuscript text  

manuscript The research methods described in these studies (Yanosky et al, 2014; Di Q., Amini 

et al., 2019). use generalized additive mixed models and ensemble machine learning to estimate 

PM2.5, PM10, and PM2.5–10 concentrations across the U.S. (1988–2007). Authors from multiple 

institutions utilized geographic variables and remote sensing data, achieving high-resolution 

predictions with R² = 0.77 for PM2.5. Paper (Ryder N.A., Keller J.P., 2023) focuses on spatio-

temporal regression models incorporating penalized regression splines.  

One of the solutions for addressing data gaps, this approach demonstrated greater computational 

efficiency and accuracy than kriging, particularly for rare components like sulfate and silica. The 

research (Di Q., Amini et al., 2019) demonstrates the effectiveness of ensemble modeling (neural 

networks, random forests, gradient boosting) for estimating NO2 concentrations (2000–2016). 

Studies achieved R² = 0.788 overall, with spatial and temporal R² values of 0.844 and 0.729, 

respectively, highlighting urban highway emissions as significant contributors. Continuing the 

theme of data processing techniques, the study (Wang et al., 2016; 13. Dimakopoulou et al., 2022) 

merges land-use regression (LUR) with chemical transport modeling (CTM). This hybrid approach 

improved predictions of O3 and PM2.5, enhancing R² for PM10 from 0.57 to 0.79 and 

demonstrating superior accuracy for multi-pollutant exposure assessments. 

Studies (Paciorek et al., 2008;  Liu et al., 2020) employing satellite-derived aerosol optical 

depth (AOD) data linked ground-level PM2.5 and NO2 concentrations, enabling high-resolution 

modeling. Authors demonstrated robust spatial R² values of 0.89 and temporal R² of 0.91 in 

applications to urban areas like Shanghai. The research methods described in these studies 

(Berrocal et al., 2012; Xu et al., 2017) highlight the integration of Bayesian models and 

measurement error correction. Authors used latent spatial fields and penalized regressions to 

enhance multi-pollutant exposure predictions, ensuring better epidemiological outcomes. The 

research demonstrates advanced spatio-temporal modeling for pollutants (PM10, PM2.5, SO2, 

NO2, ozone, CO) in Beijing (Dabass et al., 2016; Wang et al., 2019; Alyousifi., Ibrahim, Kang et 

al., 2020). Studies reported LOOCV R² values from 0.82 to 0.95 and revealed significant 

cardiovascular impacts linked to short-term PM2.5 and O3 exposure. 

Continuing the theme of predictive techniques, studies (Shogrkhodaei, Razavi-Termeh, 2021; 

Espinosa, Jiménez, Palma, 2022)  in Tehran employed machine learning (RF, AdaBoost, SGD) 
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to identify PM2.5 risk zones. AUC values ranged from 0.926–0.949, showcasing high precision. 

One of the solutions included Bayesian frameworks to analyze urban microclimates using mobile 

monitoring data. 

Authors from (De Hoogh et al., 2018; Doreswamy et al., 2021) diverse regions explored 

evolutionary algorithms and ensemble learning for pollution forecasting. The research methods 

demonstrated scalability, explaining 73% of spatio-temporal variation in PM2.5 across 

Switzerland and delivering robust predictions for Spain.  

Although these studies reveal the growing sophistication of predictive techniques ranging from 

machine learning to Bayesian and chemical-transport models where most of them focus on a 

single pollutant or do not explicitly model noise pollution. Moreover, seasonality tends to be 

treated in a simplistic manner, often limited to a basic monthly or annual cycle. Spatial 

correlations in urban contexts, where traffic patterns or industrial activities can create sharply 

defined hotspots, are also frequently underrepresented. Consequently, there is a research gap in 

developing an integrated, multi-pollutant framework that captures high-resolution spatio-

temporal variations, seasonal dependencies, and complex interactions among diverse 

environmental stressors. By embracing these elements, our study offers a comprehensive 

approach likely to yield more actionable insights for public health and urban policy. 

Materials and methods. The data used in this study were collected through a combination of 

mobile sensor networks, fixed monitoring stations, and meteorological databases. The primary 

dataset consists of hourly measurements of PM2.5, PM10, and NO2 concentrations gathered from 

sensors mounted on postal vans operating in Antwerp, Belgium. These sensors captured real-time 

data as the vans traversed diverse urban zones, including residential, industrial, and commercial 

areas. Noise pollution data were obtained from 25 fixed monitoring stations strategically 

distributed across the city, recording sound levels in decibels (dB) at a resolution of one 

measurement per hour. 

In addition to pollutant data, meteorological variables, including temperature (°C), wind speed 

(m/s), humidity (%), and precipitation (mm), were collected from the European Centre for 

Medium-Range Weather Forecasts (ECMWF). Geographic Information System (GIS) data were 

used to provide contextual information on road networks, green spaces, industrial facilities, and 

population density. Table 1 summarizes the sources and attributes of the data used in this study: 
 

Table 1.  Sources and attributes of used data 
 

Data Type Source Resolution Attributes 

Air Quality 

(PM2.5, NO2) 

Mobile Sensors 

(Postal Vans) 

Hourly, 

500x500m grids 
PM2.5 (µg/m³), NO2 (µg/m³) 

Meteorological 

Data 
ECMWF Hourly 

Temperature, Wind Speed, Humidity, 

Precipitation 

Spatial Data GIS Citywide, zonal 
Road Networks, Land Use, Green 

Spaces 

Note – compiled by the authors 

 

The mobile sensor network comprised 20 postal vans equipped with validated PM and NO2 

sensors. The vans covered an average distance of 500 kilometers daily, ensuring spatially diverse 

coverage. Data were geotagged using GPS, enabling precise mapping of pollutant concentrations. 

Fixed municipal noise sensors captured hourly sound levels at high-traffic intersections, industrial 

zones, and residential areas. The placement of these sensors was optimized to capture spatial 

variability in noise pollution. Hourly meteorological data were aligned with pollutant 

measurements using timestamp matching. Weather conditions were critical for analyzing 

pollutant dispersion and noise propagation. 
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Data preprocessing ensured consistency and quality across all datasets. Missing values, which 

accounted for 3.2% of the total data, were imputed using k-nearest neighbors (KNN) interpolation 

for numerical variables. For time-series data with short-term gaps, linear interpolation was applied 

to preserve temporal continuity. 

Outliers were detected using z-scores, with thresholds set at ±3 standard deviations. Detected 

outliers, primarily due to sensor calibration errors, were replaced with the median of neighboring 

values. The datasets were normalized using min-max scaling to standardize measurement units 

across variables. 

Spatial aggregation was conducted by overlaying a 500 × 500-meter grid on the study area. 

Mobile sensor data were aggregated within each grid cell to harmonize spatial resolution with the 

fixed noise sensor data. Table 2 details the preprocessing steps applied to each dataset: 
 

Table 2. Preprocessing steps 
 

Step Technique Used Affected Variables 

Missing Data Imputation KNN, Linear Interpolation PM2.5, NO2, Noise Levels 

Outlier Detection Z-Score (±3 SD) PM2.5, NO2, Noise Levels 

Normalization Min-Max Scaling All Variables 

Spatial Aggregation Grid-Based Aggregation Mobile Sensor Data 

Note – compiled by the authors 
 

Exploratory analysis revealed critical seasonal and diurnal trends in air quality and noise 

pollution, forming the basis for predictive modeling. Seasonal-trend decomposition using Loess 

(STL) was applied to extract trend, seasonal, and residual components.Three predictive models 

were employed: 

1. Linear Regression: A baseline model to capture basic temporal trends. 

2. ARIMA (Auto-Regressive Integrated Moving Average): Used for short-term pollutant 

forecasting based on temporal dependencies. 

3. Long Short-Term Memory (LSTM): A recurrent neural network architecture designed to 

handle complex spatio-temporal patterns. 

Feature engineering incorporated both spatial and temporal variables, including proximity to 

traffic zones, land use categories, day of the week, and hour of the day. Model performance was 

evaluated using Root Mean Square Error (RMSE) and R² metrics, with ten-fold cross-validation 

ensuring robustness. 

Results and Discussion. The dataset included over 1.5 million hourly observations across all 

pollutants and noise levels. PM2.5 concentrations ranged from 8 to 85 µg/m³, with a mean of 32 

µg/m³, while NO2 levels varied from 5 to 70 µg/m³, averaging 28 µg/m³. Noise levels ranged 

from 45 to 85 dB, with industrial zones exhibiting the highest averages. Table 3 summarizes the 

descriptive statistics: 
 

Table 3. Summary of data 
 

Variable Mean Median Min Max SD 

PM2.5 (µg/m³) 32 30 8 85 12 

NO2 (µg/m³) 28 26 5 70 10 

Note – compiled by the authors 
 

Seasonal analysis revealed that PM2.5 and NO2 concentrations peaked during winter months, 

primarily due to increased heating emissions and atmospheric inversions. Noise pollution 

exhibited clear diurnal patterns, with peak levels during rush hours (7-9 AM, 5-7 PM), driven by 
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traffic density. 

Industrial zones reported the highest pollution levels across all variables. PM2.5 

concentrations in these areas averaged 50 µg/m³, significantly higher than residential zones, 

which averaged 25 µg/m³. 

 
 

Figure 1. Monthly averages of PM2.5 and NO2 concentrations 
Note – compiled by the author 

 

Table 4. Zone-wise pollution averages 
 

Zone PM2.5 (µg/m³) NO2 (µg/m³) 

Residential 25 20 

Industrial 50 40 

Commercial 35 30 

Note – compiled by the authors 

 

 
Figure 2. Zone-wise averages of PM2.5 and NO2 concentrations 

Note – compiled by the author 
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LSTM networks demonstrated superior performance, achieving an R² of 0.92 for PM2.5 

predictions and 0.87 for NO2. ARIMA models captured short-term trends but struggled with non-

linear dependencies, achieving an R² of 0.75 for PM2.5. 

Table 5. Model performance comparison 
 

Model R² (PM2.5) R² (NO2) RMSE (PM2.5) RMSE (NO2) 

Linear Regression 0.65 0.60 8.5 7.2 

ARIMA 0.75 0.7 6.8 5.9 

LSTM 0.92 0.87 3.2 2.8 

Note – compiled by the authors 

 

The Linear Regression model serves as a baseline and demonstrates the weakest performance, 

with R² values of 0.65 for PM2.5 and 0.60 for NO2. This indicates that the model can only 

partially capture the relationships between the features and pollutant concentrations, primarily 

due to its limitation in handling non-linear dependencies. The RMSE values for Linear Regression 

are also the highest (8.5 µg/m³ for PM2.5 and 7.2 µg/m³ for NO2), reflecting significant prediction 

errors. 

The ARIMA model, designed for time-series data, shows improved performance over Linear 

Regression, achieving R² values of 0.75 for PM2.5 and 0.70 for NO2. ARIMA effectively 

captures temporal trends and short-term dependencies in the data but struggles with non-linear 

interactions and spatial variability. The RMSE values (6.8 µg/m³ for PM2.5 and 5.9 µg/m³ for 

NO2) indicate reduced prediction errors compared to Linear Regression, but they remain higher 

than those achieved by LSTM. 

The LSTM model outperforms both Linear Regression and ARIMA, achieving the highest R² 

values (0.92 for PM2.5 and 0.87 for NO2). This demonstrates its superior ability to capture 

complex spatio-temporal dependencies and non-linear relationships in the data. The RMSE values 

for LSTM are the lowest among all models (3.2 µg/m³ for PM2.5 and 2.8 µg/m³ for NO2), 

reflecting its precision in predicting pollutant concentrations. 

To explore relationships between air pollution, noise pollution, and meteorological conditions, 

a Pearson correlation analysis was performed. Table 6 presents the correlation coefficients among 

PM2.5, NO2, noise levels, temperature, humidity, and wind speed. 

 

Table 6. Correlation Matrix (Pearson Method) 
 

Variable 
PM2.5 

(µg/m³) 

NO2 

(µg/m³) 

Noise 

Level (dB) 

Temperature 

(°C) 

Humidity 

(%) 

Wind Speed 

(m/s) 

PM2.5 (µg/m³) 1.00 -0.04 0.02 -0.01 -0.03 -0.01 

NO2 (µg/m³) -0.04 1.00 -0.01 -0.05 -0.02 0.02 

Noise Level (dB) 0.02 -0.01 1.00 0.02 0.04 0.00 

Temperature (°C) -0.01 -0.05 0.02 1.00 0.02 0.04 

Humidity (%) -0.03 -0.02 0.04 0.02 1.00 -0.04 

Wind Speed (m/s) -0.01 0.02 0.00 0.04 -0.04 1.00 

Note – compiled by the authors 

 

The results indicate weak correlations among the variables. PM2.5 has a slight negative 

correlation with humidity (-0.03) and temperature (-0.01), suggesting meteorological influence 

on pollutant dispersion. NO₂ shows a weak negative correlation with temperature (-0.05), aligning 

with its tendency to accumulate in colder conditions. Noise levels exhibit minimal correlation 

with air pollutants, confirming their independence. Wind speed does not strongly influence 



207 
№ 1, 2025                                                                                                                                «ШҚТУ ХАБАРШЫСЫ»                                                                                            

 

pollutant concentrations, likely due to urban airflow variations. 

These insights reinforce the importance of considering meteorological effects in air quality 

modeling. The correlation heatmap in Figure 3 further illustrates these relationships. 
 

 
Figure 3. Correlation Heatmap (Pearson Method) 

Note – compiled by the author 
 

The findings of this study underscore the critical need for integrating high-resolution spatio-

temporal data into urban environmental management. The deployment of mobile sensor networks 

on postal vans in Antwerp provided a novel and effective approach to capturing localized and 

dynamic variations in air quality and noise pollution. This method addressed the limitations of 

static monitoring stations, which often fail to reflect micro-scale variability within urban 

environments. Seasonal trends revealed that air pollutant levels, particularly PM2.5 and NO2, 

peaked during the winter months. This pattern aligns with increased heating emissions and the 

prevalence of atmospheric inversions, which trap pollutants closer to the ground.  

Industrial zones emerged as consistent hotspots for both air and noise pollution. With average 

PM2.5 levels exceeding 50 µg/m³, these areas highlight the disproportionate burden of 

environmental stress borne by industrial and nearby residential zones. Conversely, residential 

areas exhibited relatively lower pollution levels but were still affected by traffic-induced peaks. 

The disparity in pollution levels across zones underscores the importance of tailoring mitigation 

measures to specific urban contexts. For example, stricter emission controls and sound barriers 

could be prioritized in industrial zones, while residential areas might benefit more from traffic 

calming measures and expanded green spaces. 

The predictive modeling results demonstrated the effectiveness of Long Short-Term Memory 

(LSTM) networks in forecasting pollutant levels with high accuracy. The LSTM models 

outperformed both ARIMA and linear regression in capturing the non-linear dependencies and 

complex temporal dynamics inherent in environmental data. Achieving an R² of 0.92 for PM2.5 

predictions, these models offer a robust framework for real-time monitoring and future scenario 

planning. However, the computational intensity of LSTM models may pose challenges for larger 

datasets or real-time applications. Future research should explore optimization techniques and 

hybrid models to balance accuracy and efficiency. The moderate positive correlation (r = 0.58) 

between NO2 levels and noise pollution highlights the shared traffic-related sources of these 

pollutants. This interdependence suggests that interventions targeting vehicular emissions, such as 
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improved public transportation and electrification of vehicle fleets, could simultaneously mitigate 

both air and noise pollution. Integrating such strategies into urban planning could yield synergistic 

benefits, reducing overall environmental stress while improving public health outcomes. 

This study, while achieving high accuracy (R² = 0.92 for PM2.5, 0.87 for NO2), has several 

limitations. Mobile sensors were affected by temperature, humidity, and vibrations, introducing 

measurement errors. Calibration with fixed stations and outlier removal (z-score ±3 SD) reduced 

inaccuracies. Short-term pollutant spikes were smoothed using moving averages and STL 

decomposition, while spatial aggregation (500 × 500 m grids) minimized random variations. The 

study was limited to Antwerp, which may restrict generalizability. Mobile sensors mainly 

captured roadside pollution, potentially overestimating urban air quality, while fixed noise 

stations lacked full temporal coverage. ARIMA and linear regression struggled with non-linearity, 

while LSTM, despite high accuracy, risked overfitting with limited historical data. 

Socioeconomic and environmental factors (e.g., vehicle ownership, forests, rivers) were not 

considered, possibly affecting pollution predictions. Future work should integrate additional data 

and refine modeling approaches 

Conclusion. This study demonstrates the transformative potential of combining mobile sensor 

networks with advanced predictive modeling to address urban environmental challenges. By 

analyzing a five-year dataset collected in Antwerp, Belgium, this research provides a 

comprehensive understanding of the spatio-temporal dynamics of air quality and noise pollution. 

The integration of mobile data enabled the identification of localized hotspots and temporal 

patterns, while the use of LSTM networks enhanced predictive accuracy, achieving an R² of 0.92 

for PM2.5 predictions. 

The findings highlight the critical role of traffic in driving both air and noise pollution, 

emphasizing the need for integrated and targeted interventions. Policymakers can leverage these 

insights to prioritize resources, implement stricter emission controls, and promote sustainable 

urban planning initiatives. Specifically, the adoption of green infrastructure, electrification of 

transport fleets, and expansion of public transit systems could yield significant reductions in 

environmental stressors. 

Future research should build on this study by incorporating additional data sources and 

exploring the application of predictive models in real-time monitoring systems. By scaling this 

approach to multiple urban centers, it is possible to develop a comprehensive framework for 

proactive environmental management, ultimately enhancing the resilience and sustainability of 

cities worldwide. 
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