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«TOFbI3 K¥MANAK» OUbIHbIHA APHANFAH XXACAHObI MHTEJJIEKT MOAENIH
O3IPJIEY KE3IHAE HbIFAUTDLIMN OKbITYAbI KONAAHY

NPUMEHEHME OBYYEHUA C NOAKPENJIEHUEM NMPU PA3PABOTKE
MOZOENU NN ONA UIPbl «TOINbI3 KYMAJIAK»

Abstract. Logical games often require players to solve various puzzles and strategic challenges. Thanks
to the active implementation of Artificial Intelligence, it has possible to use Deep Learning models in such
games, which has led to a significant breakthrough in solving other related tasks in the field. This paper
presents a study on the development and training of two Reinforcement Learning algorithms, Q-learning and
Deep Q-Network (DQN) for playing the game Togyz qumalaq. Both models were trained and evaluated in a
game against MiniMax, which was also implemented by the authors of this research. The experiments were
conducted with MiniMax recursion depths of 2, 3, and 4, respectively. The article presents the training
parameters of models based on Q-learning and DQN, which achieved the best results. For each of the
models, reward and training episode graphs are provided. The paper also includes the architecture of DQN,
which demonstrated promising results. The results show that DQN has achieved significant success in
solving this task, demonstrating notable performance. A comparative analysis also revealed that, unlike
DQN, Q-learning requires more significant computational and memory resources for training.

Keywords: Togyz qumalag, Reinforcement Learning, Q-learning, Deep Q-Network (DQN), MiniMax,
Algorithms, Game Al, Agent performance.

AHOamna. Jlosukanbik olibiHOap kKebiHece olibiHWwbinapdaH opmypni  b6ackambipfbilumap
(2onoeonomku) meH cmpameeusnbik MiHOemmepdi wewydi manan emedi. MyHdal olibiHOapda xacaHOb!
uHmernnekmmi 6enceHOi eHai3y apKbifibl mepeH OKbimy ModernboepiH KondaHy MmymkiHOiai natida 60510kl
6yn ocbi canadarbl backa da balinaHbicmbl Macenenepdi wewyde alimaprbikmat xemicmikmepae akesoi.
byn makanada morbi3 Kymanak olibiHbIHa apHasFaH eki KywelminzeH OKbimy aneopummiH: Q-learning xoHe
Deep Q-Network (DQN) a3ipriey xaHe okbimy 6olbiHWa 3epmmey ycbiHbinFaH. Exi Modenb de MiniMax-ka
Kapcbl olbiHOa OKbimbInObl XoHe baranaHObl, oHbl 0a ocbi 3epmmeydiH asmopriapbl Xy3ezae acbipobil.
Okcnepumenmmep calikeciHwe MiniMax 2, 3 xeHe 4 pekypcusi mepeHdicimeH Xypaisindi. Makanada eH
)XKaKcbl Hamuxeniepee Kon xXemkiseeH Q-learning xoHe DQN HeaisiHOeai modenbdepdi oKbimy
napamemprnepi 6epineeH. ModenbO0epdiH apKaliCbICbl YWIiH Mapanammay Kkecmernepi MeH oKy arnu3o0mapb!
KkenmipineeH. Kyxxam coHbIMeH kamap nepcrekmusarnsi Homuxenep kepcemkeH DQN apxumexkmypacbiH
Kammuodbl. Hamuxenep DQN 6yn maceneHi wewyde almaprbikmal xemicmikmepae XemKeHiH XoHe
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eneyni eHimOinikmi kepcemkeHiH 6indipedi. CoHbiMeH Kamap, carnbicmbipmarbl manday Q-oKbimyObiH
DQN-HeH alibipmalbinbifbl, OKbIMy YWiH edayip ecenmey pecypcmapbl MeH xad pecypcmapbiH Kaxem
ememiHdieiH kepcemmi.

Tyliin ce3dep: TorbI3 Kymarnak, KywelmineeH okbimy, Q-okbimy, mepeH Q-xesni (DQN), muHumaxc,
anzopummoep, olbiH Al, aeeHm eHimoiniai.

AHHOmauyus. Jloeudeckue uzspbl 4acmo mpebyrm om U2poK0o8 peleHUs1 Pa3uyHbIX 20/1080/10MOK
u cmpameaudeckux 3alday. brnazodapsi akmueHOMYy 8HEOPEHUIO UCKYCCMBEHHO20 UHMesiiekma 8
makux uepax rnosigusnacb 803MOXHOCMb UCMOIb308amb MOOesu 21y60K020 0byYeHUs:, 4mo npueesio K
3HaqumersibHOMY MpopbI8Yy 8 peweHUU Opyaux CMexXHbIx 3aday & samoli obnacmu. B amol cmamebe
npedcmaesneHo uccrnedosaHue Mo paspabomke u 0byyeHuto 08yx an2opummos obyyeHus ¢ noodkpen-
neHuem: Q-learning u Deep Q-Network (DQN) dns uepbi Toebi3 Kymanak. Obe modenu 6binu 0by4yeHsbl
U oueHeHbl 8 uepe npomus MiniMax, komopyr makxe peasiu3ogasnu asmopbl 0aHHO20 Ucc/ie008aHUs.
OkcnepumeHmsl nposodunuck ¢ enybuHol pekypcuu MiniMax 2, 3 u 4 coomeemcmeeHHO. B cmambe
npedcmasneHbl Napamempsbl obyyeHuss modenel Ha ocHose Q-learning u DQN, komopbie docmuenu
Haunydwux pesynbmamos. [ns kaxdol u3 modenel npedcmasrneHbl epathuku eo3HaspaxxkOeHul u
anu3odoe obyyeHus. B dokymeHm makxe ekmroyeHa apxumekmypa DQN, komopasi npodemoHc-
mpuposgana MHozoobeuwarouwue pesynbmamel. Pe3ynbsmamsl noka3eieatom, ymo DQN dobunack
3HayumersbHbIX yCriexos 8 peweHuu amod 3adayu, MPoOeMoHCmMpuUPO8as 3aMemHyro npou3eooumersib-
Hocmb. CpasHumesbHbIU aHanu3 makxe rokasar, 4ymo, 8 omnudue om DQN, Q-o6yyeHue mpebyem
0na oby4eHus bonee 3Ha4YUMes1bHbIX 8bIYUCIUMEIbHbLIX PECYPCO8 U pecypcos namsimu.

Knrodeenie cnoea: Toebi3 Kymanak, obydeHue ¢ rnodkpernneHuem, Q-obyyeHue, [nybokas Q-cemb
(DQN), muHuMakc, aneopummel, uzposoli N, npoussodumernbHOCMb azeHma.

Introduction. Artificial intelligence (Al) and Machine Learning (ML) are among the most
promising and rapidly evolving fields in technology today. Moreover, the field of
reinforcement learning (RL) is garnering increasing attention and finding broad applications
across various domains. One of the intriguing tasks in which RL demonstrates its power is the
creation and training of artificial intelligences capable of competing in traditional and
culturally significant national games.

The evolution of Reinforcement Learning (RL) in the context of games such as Go, chess,
checkers and strategy games is a fascinating and important part of Artificial Intelligence.
First of all, this study will introduce into the history and point out the key points, including
the application of RL to the AlphaGo and AlphaZero models.

The first steps in the development of game algorithms in the 1950s and 60s were the
Machine "'Shannon's Type B" (Zhumanov A. et al, 2021) and the computer program
""Samuel's Checkers Player™ for checkers.

In the 1990s and 2000s, computer programs for chess (Deep Thought (Turgumbaev T. et
al., 2019) Deep Blue became stronger due to the use of traditional methods such as MiniMax
and alpha-beta clipping.

AlphaGo developed by DeepMind, became the first significant step in applying RL to
Go, one of the most complex strategic games.

AlphaGo stunned the world in 2016 by defeating Go world champion Li Sedol. The
model uses a combination of Deep Neural Networks and Reinforcement Learning methods
to improve a game.

After the success of AlphaGo in 2017, DeepMind released a version of AlphaGo Zero,
which was trained from scratch using only the most basic information about the rules of the
game and self-playing metrics, and achieved even more impressive results (Vasiliev A. et al.,
2020).

In 2017, DeepMind advanced its research with the creation of the AlphaZero (Vasiliev
A. et al, 2020) model, capable of learning not only Go, but also chess and checkers with
amazing performance.

AlphaZero was trained using a single common architecture for different games and
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without any prior information about the rules of the game. This model surpassed the best
chess and checkers programs and even improved AlphaGo's results (Vasiliev A. et al., 2020).

Reinforcement Learning in the context of games has become a medium for
demonstrating the application of RL to complex strategic planning and learning problems.

Thus, AlphaGo and AlphaZero have shown that RL with Deep Learning can learn
strategies that surpass human abilities in games. These technologies have also found
practical application in decision optimization and robotics.

Advances in gaming have shown the potential of RL to solve a wider range of tasks, such
as automatic parameter tuning, robot control, and autonomous systems.

Traditional board games such as Togyz qumalaq, Mankala and Kalah can be improved
and diversified using Artificial Intelligence (Dalieva, A. et al., 2021).

Mancala is a traditional African game where players move and collect stones in holes on
a game board. The goal is to collect more stones than the opponent.

The board game Kalah (Pekai L. et al., 2020) is popular in different regions of Africa and
on the Arabian peninsula. Players collect and move stones in an effort to score more points
and capture the opponent's stones.

Togyz qumalagq is a strategy game popular in Central Asia where players move stones
between holes on the game board in an effort to grab more stones from the opponent
(Dalieva, A. et al., 2021). The main goal of the game is to accumulate more stones.

Here is a general description of these games and how Al can make changes to them:

— Al can be used to develop optimal strategies in games. It can analyze the current state
of the game and suggest the best moves for the players.

— Al can serve to train beginners in the game by providing recommendations and
explaining the rules.

— Al can serve to create more intelligent virtual rivals. These bots can adapt their
strategies to each player's style of play.

— Al can create a variety of game scenarios and complicate tasks for players, enriching
the gaming experience.

— These games have their own unique rules and traditions in different cultures. Al can
help players from different parts of the world understand and enjoy these games by
providing multilingual translation and context.

It is possible to improve and enrich traditional board games, making them more
interesting and accessible to a diverse audience using Artificial Intelligence.

Togyz qumalagq is a traditional board game widely popular among the peoples of Central
Asia, including Kazakhstan. It is characterized by intricate rules, strategic decision-making, and
a rich history, making it an excellent subject for research in the field of machine learning. This
article examines how RL agents can be trained to play "Togyz qumalaq" and how this can
contribute to the preservation and promotion of this culturally significant national game
(Zhumanov A,, et al., 2021).

Literature review. The research (Shakya A. et al.,, 2023) is dedicated to the latest
advancements in the field of reinforcement learning (RL) and contemporary gaming applications.
By analyzing the literature on deep learning (DL) and reinforcement learning, as well as the extent
to which scientific research is based on games such as ATARI, chess, and Go, the authors have
established a unified framework and trends for the present and future of this industry (RL in
gaming). Through their research, the authors conclude that deep RL constitutes approximately
25.1% of the DL literature, with a significant portion of this literature focused on RL applications
in the gaming industry, paving the way for new and more complex algorithms capable of
surpassing human performance.
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In article (Wu K. et al., 2023), the application of the DQN algorithm for training a neural
network to play the games Pong and Ms. Pac-Man is explored. The obtained data demonstrates
a high level of performance of DQN in the simple Atari Pong game, but it encounters
challenges when learning the more complex game Ms. Pac-Man. The authors attribute this
lower performance to time and computational resource limitations. Additionally, the authors
conclude that with sufficient training time and exploration, the model will eventually converge
once the optimal combination of hyperparameters is determined.

In reference (Pekai L. et al., 2020), the history of the game Kalah is examined, along with
research evaluating efficient tree search solutions. The authors propose the development of
computationally simpler gaming algorithms and strategies. The article introduces an original
heuristic algorithm based on the analysis of game rules, as well as standard and modified mini-
max tree search algorithms. Experiments using a simple C++ application with the Qt framework
revealed that the proposed heuristic algorithm performs comparably to an average-experience
player and can outperform tree search algorithms with depths up to 2 nodes. The heuristic
algorithm involves the use of self-learning strategies during gameplay to achieve better
performance.

Article (Vasiliev A., et al., 2020) provides a review of the field of Reinforcement Learning
(RL), including key algorithms and applications. It examines fundamental RL algorithms and
Deep Reinforcement Learning (DRL) methods for solving complex problems with continuous
actions and state spaces. Special attention is given to the applicability of RL in various
interdisciplinary domains. The article also discusses model-based approaches and multi-agent
RL. In conclusion, it emphasizes the prospects for future research in the field of RL.

In work (Buchanan B. G., 2021), the authors introduce a novel approach to playing the game
of Go, utilizing deep neural networks to evaluate board positions and make moves. These
networks are trained using a combination of supervised learning with expert data and
reinforcement learning. Without prior search, they achieve the level of modern Monte Carlo tree
search programs and introduce a new search algorithm that combines Monte Carlo simulations
with value and policy networks. Using this algorithm, the AlphaGo program defeats other Go
programs and secures a 5:0 victory over the European Go champion, marking the first time a
computer program has defeated a professional human player in a full-sized game of Go,
previously considered unattainable until a decade ago.

The work (Diddigi R., et al., 2022) presents the AlphaGo program, which demonstrated the
level of artificial intelligence capable of competing and winning in one of the most complex
strategic games - Go. AlphaGo was part of a research project that allowed DeepMind to conduct
research in the areas of boosted learning and reinforcement learning, which has significant
implications for the development of artificial intelligence and other fields. AlphaGo's success
isn't just limited to games; Technologies developed for AlphaGo can be applied in various
fields, including medicine, business and scientific research. AlphaGo has achieved many mile-
stones in the development of artificial intelligence, including beating professional Go players
and developing new learning methods. These advantages helped establish AlphaGo as a major
advance in artificial intelligence and stimulate further research and development in the field.

The research (Shevtekar M., et al., 2022) presents the main advantages of the generalized
MiniMax Q-learning algorithm for stochastic games, which can solve complex zero-sum games
where determining optimal strategies can be challenging, including economic simulations and
strategic scenarios. The considered algorithm is able to adapt to changing conditions and
strategies of other players, which makes it useful in environments with dynamic variables, and
can also be used for research and development of new methods in the field of artificial intelligence
and reinforcement learning.

The article (Zhu, W., et al., 2019) discusses the MiniMax method for which the AlphaBeta
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Pruning pruning method is used. AlphaBeta Pruning is an optimization technique for tree search
algorithms such as game trees. The basic idea of this technique is that when certain conditions
are detected, certain subtrees can be excluded from further analysis, resulting in a significant
reduction in the computational load. In the case of MiniMax, this allows you to exclude nodes
of the game tree where the probability of finding a more profitable move is low. This reduces
the number of calculations and allows you to evaluate prospects in the game more efficiently.

The authors’ use in article (Zhou, X., et al., 2017) of the DQN (Deep Q-Network) algorithm
and its theoretical analysis can be used in the field of artificial intelligence and reinforcement
learning in gaming applications and the development and improvement of artificial intelligence
for games, including classic video games and board games, in robotics, algorithms are used to
train robots to make decisions and control in various environments, to control systems and
processes in the field of autonomous cars DQN can help develop control and decision-making
systems. Deep learning algorithms, including DQN, are used to analyze medical data and
diagnose various diseases.

In (Ms.S.Manju, et al., 2011) improved strategies for the classical Q-learning algorithm using
various reward methods are considered. In the relative method, immediate rewards are selected.
This allows the agent to respond more quickly to positive rewards, reducing the number of
iterations before obtaining positive results. The continuous action method uses discounted
rewards. This allows the long-term consequences of an agent's actions to be taken into account,
helping the agent make more informed decisions. The Hyper-Q method uses mixed strategies
with cumulative rewards. This allows the agent to adapt to different scenarios and choose the best
actions in different situations. These advanced strategies enable agents to learn faster and more
efficiently, reducing the number of iterations and improving the ability to adapt to a variety of
scenarios.

The AIM and objectives of the study. The aim of the research is to develop and train a model
using Reinforcement Learning methods that can play the traditional Kazakh game "Togyz
qumalaqg”.

To achieve this aim, the following objectives are accomplished:

Model architecture selection: choose and configure a Reinforcement Learning model
architecture capable of adapting to the complex rules and strategies of the game "Togyz qumalaq"

RL agent training: train an RL agent based on collected data with the goal of enabling it to
play "Togyz qumalag" competitively.

Results evaluation: evaluate the performance of the fitted agent by comparing its gameplay to
that of a programmed algorithm and assessing the effectiveness of its strategy.

Materials and methods. In the development of any RL model, it is necessary to gather data in
order to describe the state of the environment and identify key factors.

Game state representation: the game "Togyz qumalag"” consists of a game board with 18
cells, each initially containing 9 stones and a variable number of stones as the game progresses.
Each player has 9 cells at their disposal. The game state is represented as an array of 18
elements, where each element denotes the number of stones in a cell. The objective of each
player is to collect the maximum number of stones by the end of the game. However, if a player
runs out of cells to make a move, the game is also considered in favor of the opponent. There
can be a draw when players accumulate an equal number of stones at the end of the game. A
player removes all stones from one of the pits on their side. If the selected pit contained more
than one stone, the first removed stone is placed back into the same pit from which it was taken.
All subsequent removed stones are distributed counterclockwise (from left to right in their own
pits and from right to left in the opponent’s pits). One stone is placed in each pit.

If the selected pit contained only one stone, it is placed in the next pit counterclockwise.

If, while distributing the stones, a player places the last stone into an opponent’s pit, thereby
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making the total number of stones in that pit even, they capture all the stones from that pit
(including their own) and place them in their own storage pit.

If, during the stone distribution, a player places the last stone in an opponent's pit, bringing the
total number of stones in that pit to three, and if the following three conditions are met, then all
three of those stones are moved to the player's "gazan" (a special collecting pit), and the pit is
transformed into a "tuzdyq" (a "sacred place" in Kazakh). The three conditions are as follows:

—if the player already has a "tuzdyq";

—the last pit on the opponent's side (9th hole) cannot be turned into a "tuzdyq";

—a "tuzdyq" cannot be created symmetrically to an opponent's already created "tuzdyq™ (for
example, if the third pit on the player's side is an opponent's "tuzdyq," the player cannot transform
the third pit on the opponent's side into their own "tuzdyq").

A move that violates any of these three conditions can be made, but it does not result in the
creation of a "tuzdyq" and the three stones remain in the pit. Any stone that falls into a "tuzdyq"
during distribution is taken by the owner of the "tuzdyq" and placed in their "gazan". If a player
cannot make a move because all of their pits are empty, the second player transfers all the
remaining stones in their pits to their "gazan™ and the game ends. The player with the most stones
in their "gazan" wins.

At the time of conducting the research, the authors did not have access to any historical data
regarding games with optimal moves. However, they found a solution by creating agents in the
form of random move generation and by using the classic recursive MiniMax algorithm. The
MiniMax algorithm is presented in the listing below:

Algorithm 1 MiniMax class implementation

class MiniMax:
function get_move(board, depth)

parameters:
. instance of class Board
. depth of recursion
returns:
. move

begin function
best_move = null
best_eval = -inf
best_moves =[]
possible_moves = board.get_possible_moves()

foreach move in possible_moves
board.make_move(move)
eval = MiniMax(board, depth, -inf, +inf, false)
board.undo_move()

if eval is greater than best_eval
best_eval = eval
best_moves = [move]

else if abs(eval - best_eval) is less or equal 0.01
best_moves.add(move)
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endif
end for

move = random move from best_moves
return move
end function

function MiniMax(board, depth, alpha, beta, is_maximizing)
parameters:
» instance of class Board
« depth of recursion
» alpha, beta
* is_maximizing (boolean)
returns:
» eval
begin function
eval =0
possible_moves = board.get_possible_moves()

if depth is equal O or board.check_winner() is not null
eval = board.evaluate()
return eval

end if

if is_maximizing

max_eval = -inf

foreach move in possible_moves
board.make_move(move)
eval = MiniMax(board, depth - 1, alpha, beta, false)
board.undo_move()
max_eval = max(max_eval, eval)
alpha = max(alpha, eval)

if beta is less or equal alpha
break

end if

end for

return max_eval

else

min_eval = +inf

foreach move in possible_moves
board.make_move(move)
eval = MiniMax(board, depth - 1, alpha, beta, true)
board.undo_move()
min_eval = min(min_eval, eval)
beta = min(beta, eval)
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if beta is less or equal alpha
break

end if

end for

return min_eval

end if
end function
end class

The code for the MiniMax algorithm is interpreted as follows: the MiniMax class has a method
“get_move()" which takes the current board state as an array and the depth of recursion as input.
This method returns the optimal cell number from which the computer should make its move. The
MiniMax(board, depth, alpha, beta, is_maximizing) function is the recursive core of the MiniMax
algorithm. It calculates the evaluation score for the current board state. The “is_maximizing’ flag
indicates whether the computer is maximizing its score at the current recursion level.

As the first RL model, Q — learning was adopted. The Q — function formula (1) for the model
looks as follows:

Q(s,a) = Q(s,a) + a x [R+y xmax(Q(s',a")) — Q(s,a)] (1)

where Q(s, a) represents the Q — value for a state-action pair (s, a), a (alpha) is the learning rate,
controlling how much the Q — values are updated in each learning step, R is the immediate reward
received after taking action 'a" in state 's', y is the discount factor, which balances the importance
of immediate rewards versus future rewards, max(Q(s', a')) represents the maximum Q — value
for the next state 's' among all possible actions 'a'.

The parameters of the Q — learning model were as follows:

Learning rate — 0.0001

Discount factor — 0.90

Epsilon - 0.5

The next implementation of the RL model was Deep Q Network (DQN). The DQN model was
based on fully connected Dense layers with the following architecture:

The input layer has a size of 18 neurons (board), it is connected to the first Dense layer
with 64 neurons (dense), after which the state of 2 players (tuzdyq) is supplied in parallel.
These two parallel layers then pass through Dense layers of 64 and 32 neurons respectively,
then concatenate layer into a layer of 96 neurons. In parallel there is a layer (move_owner)
with 1 neuron, which serves to supply the model with information about the order of moves.
This layer passes through Dense into 16 neurons and is concatenated into (concatenate_1).
Next, 1 layer of Dense for 128, two layers for 64 neurons and one layer for 9 neurons are
added on top. After this, it is necessary to take into account information about possible
moves, which allows this to be done by a parallel input layer (possible_moves). The
activation of the last layer occurs according to softmax, where the maximum element of the
vector shows the most probable number of the cell from which a move must be made.

Adam was used as an optimizer with a learning rate of le-6, and the loss function was
Categorical Crossentropy. The discount factor was taken as 0.95. Batch size was 32.

The structure of the DQN algorithm is shown in Figure 1.
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board input [(None, 18)]

InputLayer| output [(None, 18)]

I

dense input [(None, 18)] tuzdyk input [{None, 2)]

Dense | output | [(None, 64)] | |inputLayer| output | [(None, 2)]

I l

dense_1| input [(None, 64)] dense_2 input [(None, 2)] move_owner| input [(None, 2)]

Dense output [(None, 64)] Dense output [(None, 32)] InputLayer | output [(None, 32)]
concatenate input [(None, 64), (None, 32)] dense_3 input [(None, 1)]
Concatenate | output [(None, 96)] Dense output [(None, 16]

concatenate_1| input [(None, 96), (None, 16)]|

Concatenate | output [(None, 112)] I

dense_4 input [{(None, 112)]

Dense output [(None, 128)

l

dense_5 input [(None, 128)]

Dense output [(None, 64]

l

dropout_1| input [(None, 64)]

Dropout | output [(None, 64]

[

dense_7 input [(None, 64)] possible_moves| input [(None, 96), (None, 9)]
Dense output [(None, 9] InputLayer output [(None, 9)]
multiply input [(None, 9), (None, 9)]
Multiply output [(None, 9)]

dense_8 input [{None, 9)]

Dense output [(None, 9]

Figure 1. The structure of DQN model
Note — compiled by the author or compiled by the authors on the basis of (Nurtay M., 2022)

Policy Network

I'E

Target Network

T

Optimize

Experience ReplayBuffer

'z —

Hyperpameters: Training loop
- learning rate | -Random/policy action
- discount factor - Environment
- batch size - Update memory
- Optimize
- Target Network update

Figure 2. DQN algorithm’s pipeline
Note — compiled by the author or compiled by the authors on the basis of (Nurtay M., 2022)
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The Policy Network takes the state of the environment as input and predicts Q-values
(expected future rewards) for all possible actions. Policy Network learns to predict optimal actions
in different environmental states.

Target Network is a second neural network that also predicts Q-values, but it is used during
the training process to stabilize the update of Q-values. During training, the Target Network is
updated slower than the Policy Network and is used to calculate target Q-values.

The Experience Replay Buffer stores previous states, actions, rewards, and next states
collected as the agent interacts with the environment. It is used to randomly sample learning
experiences, which helps improve learning stability.

Training Loop is the core of the DQN algorithm, in which the agent interacts with the
environment, collects experience and updates the Policy Network and Target Network. The
training cycle includes sampling mini-batches from the experience buffer, calculating losses, and
updating the network weights.

Hyperparameters are parameters that determine the agent’s behavior and the learning process,
such as the learning rate, discount factor, batch size and others. Hyperparameters must be tuned
experimentally to achieve better results.

Results. This section presents the results of a study aimed at applying reinforcement learning
methods to the development of an intellectual model for the game "Togyz Kumalak". The study
results reflect the performance and adaptability of models developed using reinforcement learning
and compare them with classical methods such as MiniMax. This section also provides an analysis
of the key results, an assessment of the strengths and limitations of our approach, an examination
of the key points, and a conclusion about their impact on the results.

A. Results of Q-learning performance. The Q-learning model was trained on 700 game
episodes and showed the best result for a game with a MiniMax recursion depth of 1. For other
options of recursion depth, the results were significantly lower. It should be noted that the
algorithm was subject to restrictions on memory consumption; accordingly, it was necessary that
the algorithm could learn as quickly as possible at lower costs for storing various states of the Q-
table. However, even with all game variants, memory overflow was reached after the 700th
episode of the game. The learning outcomes using the Q-learning model are shown in Figure 3.

Q-learning results
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Figure 3. Q-learning score for MiniMax depths 2, 3, and 4
Note — compiled by the author personally (Akhmetov A.)
The graph above demonstrates that the 81 stone indicator is not achieved in any games,
however, these are games that mostly ended either in a draw or in favor of the Q-learning model,
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when MiniMax had no possible moves left. With each increase in the recursion depth of the Q-
learning model, it became more difficult to win MiniMax, which is also illustrated by the results.

B. Results of DQN model performance. On the contrary, the DQN model showed better results
and over a significantly larger number of games played. The result of DQN training is shown in
Figure 4.

DQN results
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Figure 4. DQN score for MiniMax depths 1, 2, 3, and 4
Note — compiled by the author personally (Akhmetov A.)

Discussion of experimental results. In this section, we analyze the results of our experiments,
particularly focusing on the "Games vs Score" graph for the Togyz qumalag game at different
depths of the MiniMax search (1, 2, 3, and 4) in comparison to the performance of DQN and Q-
learning.

The "Games vs Score" graph reveals valuable insights into how the depth of the MiniMax
search affects the performance of both DQN and Q-learning agents. It is evident that the
performance of the agents can vary significantly depending on the depth of the opponent's search.
Notably, DQN's performance shows a substantial improvement when the MiniMax depth is set to
2.

The significant improvement in DQN's performance at a MiniMax depth of 2 is a noteworthy
finding. It suggests that DQN's ability to adapt and make informed decisions in response to the
opponent's actions is particularly effective when facing an opponent with a moderately deep
search strategy. This adaptability demonstrates the power of deep reinforcement learning in
handling complex and evolving game situations.

A. Q-learning and Resource Requirements. On the other hand, Q-learning appears to face
challenges, especially when confronted with opponents utilizing deeper MiniMax searches. The
increased search depth introduces greater complexity, and Q-learning's resource-intensive nature
becomes more apparent. The resource demands associated with Q-learning, particularly in
memory and computation, may hinder its performance and scalability in scenarios where resource
constraints are a concern.

B. Implications for Decision-Making in Game Al. The performance contrast between DQN
and Q-learning highlights the importance of choosing the right algorithm for a specific context.
DQN excels when adaptability and quick decision-making are crucial, making it an attractive
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option in games with varying opponent strategies.

Additionally, our findings have implications for game developers and Al practitioners. When
implementing game Al, the choice of algorithm should consider factors such as computational
resources, adaptability, and the expected depth of the opponent's search.

Conclusions. In this study, we explored the performance of Q-learning and Deep Q-Network
(DQN) as main of the Reinforcement Learning algorithms in the Togyz qumalag game. We also
implemented a MiniMax opponent to assess the adaptability and resource efficiency of both
algorithms.

The standout finding of this research is the remarkable performance of DQN at a MiniMax
search depth of 2. DQN demonstrated a high level of adaptability and competitiveness when faced
with opponents employing moderately deep search strategies. This underscores the effectiveness
of Deep Reinforcement Learning in handling complex and dynamic game environments.

On the other hand, our results indicate that Q-learning encounters resource-related challenges,
especially when confronted with opponents utilizing deeper MiniMax searches. The algorithm's
resource-intensive nature poses concerns regarding its scalability in resource-constrained settings.

Research findings underscore the importance of selecting the appropriate algorithm for a
specific gaming context. DQN shines in scenarios where adaptability and swift decision-making
are vital, whereas Q-learning may require significant computational and memory resources to
maintain competitiveness.

The results of this study have several implications for the fields of Reinforcement Learning
and game Al. They serve as a call to further optimize and fine-tune Deep Reinforcement Learning
techniques, enhancing their suitability for complex games like Togyz qumalag.

In conclusion, the performance of DQN at MiniMax depth 2 highlights the potential of Deep
Reinforcement Learning in addressing the complexities of game Al. The choice of algorithm
should be driven by the specific requirements of the game, ensuring that the game Al performs
optimally while respecting constraints.
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