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LoRa, energy efficiency, Wireless communication technologies play a key role in providing
wireless sensor networks, efficient and reliable Internet of Things (IoT) networks. Among them,
XGBoost, packet delivery rati Long Range (LoRa) technology and the LoRaWAN protocol are widely
(PDR). known for their ability to provide long-range communications with low

power consumption and cost-effectiveness. One of the main challenging
issues in deploying autonomous wireless networks is the ongoing need
to optimize transmission parameters to minimize node energy
consumption (EC) and maximize packet delivery ratio (PDR). This study
introduces a novel transmission parameter selection algorithm such as
Spreading Factor (SF) and Transmission Power (TP), leveraging machine
learning (ML) methods such as XGBoost, GRU, and RBFN. The algorithm
predicts the distance to a node based on the received RSSI, and
subsequently forecasts EC and PDR, substantially enhancing network
performance. The proposed approach demonstrates high prediction
accuracy, achieving 99%, while reducing EC by 20.43% and increasing the
PDR by 23.72% compared to the traditional adaptive data rate (ADR)

algorithm.
Tyiinai cesaep: TYUIHAEME
LoRa, sHeprus TnimMAiairi, CoiMcbI3  GaliaaHbIc  TexHoaormsaapel 3arrap VIntepmeri  (IoT)
CBIMCBI3 CEHCOPABIK XeaiaepiHiH TMiMAiI JKoHe CeHiMAlI >KYMBICBIH KaMTaMachl3 eTyJe
xeaizep, XGBoost, MaHBI3ABl poa aTkapagbl. OaapAblH imniHAe, y3aK KaIIBIKTHIKTAFbI
HakeTTepAi XKeTKizy OaliaaHBIC MYMKIHAITiH, TOMeH KyaT TYTHIHY MeH 9KOHOMUKAABIK
koopPurmenti (PDR). THiMAiaikTi KamTamaceis etetin Long Range (LoRa) TexHoaoruscel MmeH

LoRaWAN xarramacel KeHiHeH TaHbIMaa. ABTOHOMABI CBIMCHI3
>Keaizepai icke aceIpyjarbl Herisri Moaceaeaepaid bipi — TyliHaepain
sHeprus TyThiHYbIH (EC) asaiiTy >koHe makeTTepai >keTkizy kosdpdu-
nmentin (PDR) OGapwiHmia apTTeipy yImiH Xibepy mnapameTrpaepin
OHTalAaHABIPY KaXKeTTiairi 604bm Tabsaaabl. bya sepTrey GaprichiHAa
MammHaAbK okbITY (ML) aaicrepin, consy iminae XGBoost, GRU xoHe
RBEN xoagana otwipei, Spreading Factor (SF) sxeme Transmission
Power (TP) cusakrel Xibepy mapaMeTpaepiH TaHAay VIIH >KaHa
aATOPUTM YCBIHBIAABL. AATropuT™M KabblagaHraH RSSI Herizinge Tyiiinre
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AeVIHIT KaIIBIKTBIKTBI 00AXKanapl koHe cogaH keniH EC sxone PDR
0oaKaMAapbIH  KYprisedi, €oa  apKblABl  >KeAiHiH  >KYMBICBIH
alfTapABIKTall >KaKcapTaabl. Y CBIHBIAFaH 94iC JKOFaphl 00AKaM AdAAITiH
kepcerir, 99 %-fa XeTTi, a1 A9CTYypAi a4anTUBTI AepPeKTepP >KbL1AaMABIFBI
(ADR) aaropurmimen caasicteipranga EC-ti 20,43 %-ra TeMeHAeTirl,
PDR-gi 23,72 %-¥a apTTHIpABL.

Kaiouessie caoBa: AHHOTALIMSI

LoRa, Texnoaorun 6ecrIpOBOAHONM CBSA3M UTPAIOT KAIOYEBYIO pPOAb B
BHePTod(PPEeKTUBHOCTD, obecrrevenun P PeKTUBHBIX U HaAe>XKHBIX ceTel JIHTepHeTa Bemieii (IoT).
OecrpoBOAHBIE CEHCOPHBIE Cpean Hux texsoaormst Long Range (LoRa) m mporokoa LoRaWAN
cetn, XGBoost, IIIPOKO MW3BECTHBI CBOEM CIIOCOOHOCTBIO oODecreymBaTh CBA3b Ha
K09PPUIIMEHT 40CTaBKU 0OABIIMX  PaAcCTOSAHMAX C  HMU3KUMM  DHepromorpebAeHumeM 1
naketos (PDR) SKOHOMIYECKO!l 9¢QPeKTUBHOCTBI0. OAHOM 13 OCHOBHBIX CAOXKHBIX

npobaeM IIpM pa3BepTHIBAHUM aBTOHOMHBIX OeCIIpOBOAHBIX cCeTell
SIBASETCSI TIOCTOSIHHAsg HeoOXOAVMOCTb ONTHMMU3AILUM IIapaMeTpoOB
nepejaun AAsd MUHUMM3auuy sHepronorpedaenusa ysaa (EC) u
MakcuMmmsanun kosgduumenra gocrasku Imaxkeros (PDR). B stom
nccAeJOBAaHUN IIpeACTaBA€H HOBBII aATOPUTM BBIOOpa IapaMeTpOB
rrepejaun, Tako¥ Kak Koa¢gduiimeHT pacripoctpanenns (SF) u MonHoCTh
nepegaun (TP), ncroapsyomuit MeToAsl MamyHHOro oOydenns (ML),
takne kKak XGBoost, GRU wm RBFN. AaropmrMm npeackasbiBaer
paccrosiHMe A0 y3Aa Ha OCHOBe moaAydeHHoro RSSI, a 3arem
npornosupyet EC u PDR, cymiecTseHHO ITOBbIIIas TPOU3BOAUTEABHOCTD
cetu. Ilpeasaraemslii NOAXO4 AEMOHCTPUPYET BBICOKYIO TOYHOCTh
HporHo3uposansl, gocturast 99%, nmpu stom EC cuHmkaercs Ha 20,43% u
PDR yBeamumusaercsa Ha 23,72% II0 CpaBHEHMIO C TpaAWUIIMOHHBIM
aArOpUTMOM aAalTUBHOIN cKopocTy nepegaun gaHHbIX (ADR).

INTRODUCTION

Nowadays, with the rapid growth of IoT applications, there is an increasing demand for
high connectivity over long distances while minimizing energy consumption (EC). Consequently,
LoRa technology and LoRaWAN protocol have become preferred solutions for establishing
networks that enable long-distance communications with low power usage. However, despite
these advantages, optimizing transmission parameters continues to be a major challenge for
further reducing node EC and enhancing overall network efficiency.

Considerable attention is devoted to studying transmission parameters and their impact
on network efficiency. In articles (Porobic¢ et al., 2021; Bor & Roedig, 2017), authors highlight the
significance of selecting correct value of bandwidth (BW), SF and TP parameters to achieve
optimal network performance. These parameters are critical for ensuring the sustained reliability
of LoRaWAN networks, particularly in urban and rural areas (Griva et al., 2023). In (Ghaderi &
Amiri, 2024), the authors focus on modeling and analyzing how various transmission parameters
influence the reliability and efficiency of networks.

In addition, the ADR data transmission algorithm, is employed in order to improve the
energy efficiency of LoRa wireless networks in (Peruzzo & Vangelista, 2018). The standard ADR
mechanism can be enabled to adjust the SF assignment and transmit power, based on the SNR
readings obtained from the received signal. This algorithm plays an essential role in managing
data transfer rate and transmitter power within LoRaWAN networks. The study in (Slabicki,
Premsankar & Di Francesco, 2018) discusses how adaptive parameter configuration can improve
network performance in dense IoT deployments. In contrast, authors in [Ksiazek & Grochla, 2021]
investigates flexibility of the ADR algorithm and its impact on network performance under
various operating conditions. However, the ADR algorithm exhibits several limitations, which
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led to further research in this area. Recent studies have introduced improved versions of the ADR
algorithm, including ND-ADR, ADR-MIN, and EARN (Park et al.,, 2020). These advanced
approaches utilize the average Signal-to-Noise Ratio (SNR) to adjust data transmission
parameters, leading to enhanced PDR and reduced EC (Babaki, Rasti & Taskou, 2020; Jiang et al.,
2021).

Optimizing parameters for LoRa wireless network nodes involves utilizing one of three
ML methods: supervised learning, unsupervised learning, and reinforcement learning. In
supervised learning, one of the network parameters, such as SF or TP, is most often selected and
these parameters are predicted based on known data using regression or classification (Cuomo,
Garlisi, Martino & Martino, 2020). In addition, regression and classification are used to predict
collisions. Reinforcement learning provides a natural framework for optimizing parameters by
allowing a wireless network node (agent) to interact with its environment. Through feedback
mechanisms, such as rewards or penalties, the agent learns to identify the optimal parameters for
efficient message transmission (Minhaj et al., 2023; Chen et al., 2022). Additionally, unsupervised
learning is utilized to determine the most efficient operating modes of network nodes (Alenezi,
Chai, Jimaa & Chen, 2019).

Therefore, much of the effort in optimizing parameters for LoORaWAN wireless networks
involves reaching a compromise between two contradictory parameters: EC and PDR. Reducing
EC typically involves reducing TP, which in turn decreases the success rate of message delivery.

MATERIALS AND METHODS

The study is structured into two main stages: online and offline. The online stage involves
three simulations of wireless networks, as illustrated in Figure 1. Optimizing network parameters
is crucial to reduce EC and increase PDR. This optimization involves studying the
interdependence of various parameters. As shown in Figure 1, the study utilizes four different
simulations (Sim1, Sim2, Sim3, and Sim4) within the OMNeT++ environment using the FLoRa
library, which incorporates essential parameters based on results of physical experiments.

‘ Siml1 —-E] | Sim3 I
matrix
maxTP
ML pred. D.SF, TP
EC, PDR

RSSI

ML pred.

Distance

P ——
]\l’. w

[ Online algorithm J Sim4

EC, PDR
|—

Figure 1. General structure of the study
Note: compiled by the authors
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Siml1 is intended for constructing a correlation matrix (Corr. matrix), showing the degree
of interrelation of network parameters. Then, data collection for ML is essential to achieve
accurate predictions of network parameters under varying conditions, conducted specifically
during the Sim2 phase. The model that exhibits the highest predictive performance (Best model)
is subsequently employed in collaboration with an online algorithm to identify the most optimal
network parameters. Sim3 is designed to collect data to create a model that predicts the
transmitter-receiver distance based on Received Signal Strength Indication (RSSI) at maximum
TP. The distance prediction results are the input data for the best model, the output of which is
the predicted PDR and EC for a given distance and various TP and SF options. The algorithm
determines the most optimal values of the SF and TP parameters. Finally, it is essential to
evaluate the effectiveness of the predicted parameters for a specific network configuration. This
is achieved by simulating Sim4 with the algorithm-selected network parameters and assessing
the efficiency of the proposed system using the ADR algorithm.

The simulation Sim1 was performed using various numbers of nodes and gateways, where
each node transmits messages to the gateways using different parameter combinations. This
approach enabled the collection of a comprehensive dataset, enhancing our understanding of the
correlation between PDR and EC in LoRa networks. The simulation results are presented as a
correlation matrix in Figure 2.

The correlation matrix illustrates how the average EC and variance (o) of all nodes depend
on several parameters during message transmission: bandwidth (BW), coding rate (CR), SF, TP,
number of nodes (N), and number of gateways (GW). Analysis of the matrix reveals that SF and
TP exert the most significant influence on node EC.

Correlation Matrix
-1.0

0.8

003 002 000 000 -0 0.
-0.03 “ 001 000 -0.00 . X 0.6
0.01 “ 001 000 . 116 0.4

0.01 100 0.00

Figure 2. Correlation matrix
Note: compiled by the authors

The SF parameters ranged from 7 to 12, covering all available options. The transmit power
varied between 2 dBm and 14 dBm. The maximum power is sufficient for successful message
transmissions even from the most remote node. The simulation area spans 350 by 350 meters,
with the receiving gateway positioned at coordinates 100 by 100 meters. The lognormal
distribution model was used as a signal propagation model. The number of LoRa nodes for data
collection in the selected area is 1046.
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To collect the database, the parameters SF, TP and Distance will be employed as input
value for the Sim2 simulation. During the three-day simulation period, each node will send 216
messages. This is essential for a more precise evaluation of EC and PDR. The time between
message arrivals follows an exponential distribution with a mean value of 1000 seconds. When
calculating a node's total EC, factors such as each message's sending power, airtime, and
additional parameters are taken into account. EC and PDR were obtained as output data, as
shown in the block diagram in Figure 3.

Table 1. Simulation parameters in OMNeT++

Parameter Value
Simulation time 3d
Simulation area 350 x 350 m
Number of nodes 1046
Spreading Factor SF [7-12]
Transmit Power TP [2-14] dBm
Path loss PL(d0)=127.41,d0 =40, n=2.08, 0 =3.57
Receiver sensitivity -137 dBm
Carrier frequency 868 MHz
Bandwidth BW 125 kHz
Coding Rate CR 4/8

Note: compiled by the authors

G P
XGBOOST __.l argmax l
Input:
SF g
GRU £
Dist. <
RBFN
| S —

Output:
(PDR, EC)

Figure 3. Block-diagram of data collection for ML
Note: compiled by the authors

XGBoost, RBFN, and GRU were used to predict PDR and EC. 85% of the data was used for
model training, while the remaining 15% was reserved for the testing phase. Prediction accuracy
will be evaluated using R2, MAE, MSE, and RMSE parameters.

The OMNeT++ network simulator provides the ability to calculate the RSSI for each Lora
node. It uses several path loss models along the path to estimate the decrease in power of a radio
signal as it propagates from the transmitter to the receiver. One example of such a model is the
LogNormal Shadowing Model, which considers both deterministic path loss and random signal
fluctuations caused by obstacles and reflections.

The lognormal distribution model is an extension of the free space model. It adds a random
component to the logarithmic distance function to account for shading. The model equation is
presented below:
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PL(d) = PL(d,) + 10nlog10(dio) +X, 1)

where: PL(d) — path losses over distances d;

PL(d,) — losses at reference distance d;

n — attenuation coefficient;

X, — random value, normally distributed with zero mean and standard deviation o.

The lognormal distribution parameters were set as follows: PL(do)=127.41, d=40, n=2.08,
and 0=3.57. In article (Slabicki, Premsankar & Di Francesco, 2018), a comparative evaluation of
the lognormal distribution model implemented in OMNeT++ using real-world data is presented.
The study demonstrate that the model achieves high accuracy in simulating signal attenuation in
both urban and suburban environments. These parameters were calibrated based on
measurements from various settings and showed favorable performance when compared to
actual data.

For the Sim3 simulation, 100 nodes were installed in the selected area. In the OMNeT++
environment, the powers of the received signals were obtained for each node. Leveraging the
chosen signal propagation model, it becomes feasible to calculate the distance to a node
transmitting at a known power level of 14 dBm.

The proposed algorithm for optimizing the SF and TP parameters is the generation and
enumeration of all possible options and the selection of the best depending on the necessary
requirements as depicted in Figure 4. The operation requires only the power of the initially
received RSSI signal, which is used to determine the distance, as outlined in section 2.5. Based on
the obtained distance value, various parameters such as SF and TP are selected. The resulting
data list is sent to the best model as input, yielding outputs for EC and PDR.

—" maxTP, RSSI SF, TP
RSSI Pred. Distance 5
Best model

Filter
(data)

List [SF:7-12] {1, <c1p

List [TP:2-14]

List of
(D,SF,TP,EC,PDR)

Figure 4. Algorithm for optimizing SF and TP parameters
Note: compiled by the authors

As can be seen from Figure 4, the best model predicts output values for EC and PDR.
Subsequently, the results from the best model are sent to the filter, the algorithm of which is
shown in Figure 5.

Figure 5 illustrates the operational concept of the proposed filter. Initially, the filter takes
as input a dataset comprising 78 lines (D, SF, TP, EC, PDR). Subsequently, the PDR values of each
row go through the conditions >5, >25, >30, >40, >50, >75, >80, as well as the maxPDR function,
which from the entire list returns the row with the maximum PDR value and the corresponding
TP and SF values. Rows meeting these conditions proceed to the next stage, while those not
meeting the conditions remain in the input list. This filtering approach effectively establishes a
lower threshold for PDR values. After each condition for the lower PDR threshold, the resulting
dataset is further filtered based on minimum EC using the minEC function. As a result, for each
range of PDR values, the minimum EC value and the corresponding SF and TP values are
determined.
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Figure 5. Filter block diagram
Note: compiled by the authors

RESULTS AND DISCUSSION

XGBoost demonstrated the best performance in predicting EC, PDR, and distance. The
results were as follows: prediction_EC (R2 Score - 0.99999, MAE - 3.97440, MSE - 6.16825, RMSE
- 7.85382) and prediction_PDR (R2 Score - 0.99557, MAE - 1.71041, MSE - 6.11819, RMSE - 2.47349).

Table 2 presents the performance metrics of three models (XGBoost, GRU, and RBEN) in
predicting values for the variables EC and PDR.

Table 2. Prediction accuracy of EC, PDR and Distance in ML models XGBoost, GRU and RBFN

Performance EC PDR Distance
metrics
XCBoost R2 0.99999 0.99557 0.99571
MAE 3.97440 1.71041 4.75846
MSE 6.16825 6.11819 65.40882
RMSE 7.85382 2.47349 7.45037
GRU R? 0.98685 0.97253 0.97520
MAE 0.95878 4.62209 6.75299
MSE 1.90047 38.26388 116.23087
RMSE 1.37857 6.18578 10.78104
RBEN R2 0.99837 0.99428 0.98162
MAE 0.31358 1.99114 6.18024
MSE 0.24126 7.91164 87.68931
RMSE 0.49118 2.81276 9.18952

Note: compiled by the authors
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The XGBoost model exhibited outstanding results with R2 Score close to 1 for all variables
and the lowest MAE, MSE, and RMSE values, indicating its exceptional accuracy. The GRU model
showed slightly lower accuracy with R2 Score ranging from 0.97253 to 0. 98685, along with higher
MAE, MSE, and RMSE errors. The RBFN model also demonstrated high accuracy with R2 Score
between 0.98162 and 0.99837, and moderate MAE, MSE, and RMSE values, which were lower
than GRU but not as superior as XGBoost in some instances.

RSSI values are essential for predicting the distance between the transmitter and the
gateway. We have gathered RSSI values from 100 test nodes with a maximum transmit power of
14 dBm. The predicted distances from the XGBoost, GRU, and RBFN models were compared with
distances acquired from OMNeT++.

All models demonstrated very high prediction accuracy, as shown in Table 2, with
XGBoost achieving the best performance (R2 Score: 0.99571, MAE: 4.75846, MSE: 65.40882, RMSE:
7.45037). Using these predictions, the distance to the node after the initial message transmission
can be calculated. In subsequent steps, this distance will be utilized in the proposed algorithm.
Figure 6 illustrates the relationship between distance and received signal power for various ML
methods.

350 — Distance_Omnet
— Distance XGBOOST

300 == Distance_ GRU
— Distance_ RBFN

250

200

Distance (m)

130 125 120 115 110
RSSI (dBm)

Figure 6. Dependence of distance on received signal power
Note: compiled by the authors

In order to evaluate the performance of the proposed algorithm, a Sim4 benchmark
simulation were conducted using 100 test nodes with varying filter parameters. The ADR
algorithm was used for comparison. The obtained results were presented in Table 3 for diverse
filter settings.

Figure 6 illustrates the accuracy of EC and PDR results from GRU, XGBoost, and RBEN
predictions compared to OMNeT++ simulations across various minimum PDR threshold values.
The graphs highlight that XGBoost and RBFN models exhibit high accuracy. However, as the
minimum PDR threshold increases, the alignment between model predictions and OMNeT++
simulations decrease, particularly evident in the PDR plot (Figure 7b). The highest accuracy is
observed at a minimum PDR threshold of >80. Thus, we can conclude that the trained XGBoost
and RBFN models demonstrate robust predictive capabilities."

Using the obtained models and the proposed algorithm, we made a comparison with
traditional ADR, for which we carried out a simulation of Sim4 with 100 nodes that sent 216
packets over 3 days. Packets were sent with an exponential distribution and an average time
between sendings of 1000 seconds. Figure 7 shows the gain of the XGBoost and RBFN models
compared to the ADR algorithm depending on the value of the minimum PDR threshold.
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Figure 7. Determination of accuracy between filter result and OMNeT++ a) EC b) PDR
Note: compiled by the authors
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Figure 8. Determination of optimal filter parameters: a) XGBoost, b) RBFN
Note — compiled by the authors

From the graphs, it is obvious that increasing the minimum PDR threshold enhances the
success rate while reducing EC. The equilibrium point occurs where the PDR and EC graphs
intersect at the lower filter threshold of minPDR > 27.5. At this point, we achieve improvements
in both EC and PDR. In the optimal prediction model, XGBoost, the success rate in EC was 20.43%
higher and in PDR was 23.72% higher compared to ADR. Moving towards an increase in the
lower PDR threshold will lead to an increase in the network PDR, but the EC also increases, which
is undesirable for network efficiency. Conversely, when moving towards a lower PDR threshold,
most messages will not be delivered, even though it improves energy efficiency.

The main difference of our approach is its ability to find the optimal balance between EC
and performance, which significantly improves the overall efficiency of the LoRaWAN network.
Our proposed method not only improves EC and PDR, but also has high accuracy in predicting
optimal parameters. We selected ML methods due to their ability to efficiently process large
amounts of data and accurately predict parameters, making them ideal for optimization problems
in dynamic and resource-intensive networks.

CONCLUSION

This paper introduces an optimization algorithm for SF and TP parameters in LoORaWAN
wireless networks using different ML methods. XGBoost, GRU, and RBEN techniques were
utilized to predict optimal parameters, where XGBoost demonstrated the highest accuracy,
accounting for 99.5%. The results indicate that our optimized algorithm enhanced energy
efficiency by 20.43% and improved PDR value by 23.72% compared to traditional ADR methods.
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The key finding of this research is to reach balance between EC and PDR, which can
considerably enhance the overall performance of the LoRaWAN network. We proposed an
optimal lower limit of PDR that achieves a trade-off between EC and PDR compared to
traditional ADR. The relevance of the study lies in its contribution to optimizing LoRaWAN
network parameters, which is essential for the long-term and reliable operation of IoT
devices.

The obtained data was processed and validated in the OMNeT++ simulator using the
FLoRa library. The simulation results are consistent with the model prediction results.
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