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 Wireless communication technologies play a key role in providing 

efficient and reliable Internet of Things (IoT) networks. Among them, 

Long Range (LoRa) technology and the LoRaWAN protocol are widely 

known for their ability to provide long-range communications with low 

power consumption and cost-effectiveness. One of the main challenging 

issues in deploying autonomous wireless networks is the ongoing need 

to optimize transmission parameters to minimize node energy 

consumption (EC) and maximize packet delivery ratio (PDR). This study 

introduces a novel transmission parameter selection algorithm such as 

Spreading Factor (SF) and Transmission Power (TP), leveraging machine 

learning (ML) methods such as XGBoost, GRU, and RBFN. The algorithm 

predicts the distance to a node based on the received RSSI, and 

subsequently forecasts EC and PDR, substantially enhancing network 

performance. The proposed approach demonstrates high prediction 

accuracy, achieving 99%, while reducing EC by 20.43% and increasing the 

PDR by 23.72% compared to the traditional adaptive data rate (ADR) 

algorithm.  

Түйінді сөздер: 
 

ТҮЙІНДЕМЕ 

LoRa, энергия тиімділігі, 

сымсыз сенсорлық 

желілер, XGBoost, 

пакеттерді жеткізу 

коэффициенті (PDR). 

 Сымсыз байланыс технологиялары Заттар Интернеті (IoT) 

желілерінің тиімді және сенімді жұмысын қамтамасыз етуде 

маңызды рөл атқарады. Олардың ішінде, ұзақ қашықтықтағы 

байланыс мүмкіндігін, төмен қуат тұтыну мен экономикалық 

тиімділікті қамтамасыз ететін Long Range (LoRa) технологиясы мен 

LoRaWAN хаттамасы кеңінен танымал. Автономды сымсыз 

желілерді іске асырудағы негізгі мәселелердің бірі – түйіндердің 

энергия тұтынуын (EC) азайту және пакеттерді жеткізу коэффи-

циентін (PDR) барынша арттыру үшін жіберу параметрлерін 

оңтайландыру қажеттілігі болып табылады. Бұл зерттеу барысында 

машиналық оқыту (ML) әдістерін, соның ішінде XGBoost, GRU және 

RBFN қолдана отырып, Spreading Factor (SF) және Transmission 

Power (TP) сияқты жіберу параметрлерін таңдау үшін жаңа 

алгоритм ұсынылды. Алгоритм қабылданған RSSI негізінде түйінге 
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  дейінгі қашықтықты болжайды және содан кейін EC және PDR 

болжамдарын жүргізеді, сол арқылы желінің жұмысын 

айтарлықтай жақсартады. Ұсынылған әдіс жоғары болжам дәлдігін 

көрсетіп, 99 %-ға жетті, ал дәстүрлі адаптивті деректер жылдамдығы 

(ADR) алгоритмімен салыстырғанда EC-ті 20,43 %-ға төмендетіп, 

PDR-ді 23,72 %-ға арттырды. 
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 Технологии беспроводной связи играют ключевую роль в 

обеспечении эффективных и надежных сетей Интернета вещей (IoT). 

Среди них технология Long Range (LoRa) и протокол LoRaWAN 

широко известны своей способностью обеспечивать связь на 

больших расстояниях с низким энергопотреблением и 

экономической эффективностью. Одной из основных сложных 

проблем при развертывании автономных беспроводных сетей 

является постоянная необходимость оптимизации параметров 

передачи для минимизации энергопотребления узла (EC) и 

максимизации коэффициента доставки пакетов (PDR). В этом 

исследовании представлен новый алгоритм выбора параметров 

передачи, такой как коэффициент распространения (SF) и мощность 

передачи (TP), использующий методы машинного обучения (ML), 

такие как XGBoost, GRU и RBFN. Алгоритм предсказывает 

расстояние до узла на основе полученного RSSI, а затем 

прогнозирует EC и PDR, существенно повышая производительность 

сети. Предлагаемый подход демонстрирует высокую точность 

прогнозирования, достигая 99%, при этом EC снижается на 20,43% и 

PDR увеличивается на 23,72% по сравнению с традиционным 

алгоритмом адаптивной скорости передачи данных (ADR). 

 

INTRODUCTION 

Nowadays, with the rapid growth of IoT applications, there is an increasing demand for 

high connectivity over long distances while minimizing energy consumption (EC). Consequently, 

LoRa technology and LoRaWAN protocol have become preferred solutions for establishing 

networks that enable long-distance communications with low power usage. However, despite 

these advantages, optimizing transmission parameters continues to be a major challenge for 

further reducing node EC and enhancing overall network efficiency. 

Considerable attention is devoted to studying transmission parameters and their impact 

on network efficiency. In articles (Porobić et al., 2021; Bor & Roedig, 2017), authors highlight the 

significance of selecting correct value of bandwidth (BW), SF and TP parameters to achieve 

optimal network performance. These parameters are critical for ensuring the sustained reliability 

of LoRaWAN networks, particularly in urban and rural areas (Griva et al., 2023). In (Ghaderi & 

Amiri, 2024), the authors focus on modeling and analyzing how various transmission parameters 

influence the reliability and efficiency of networks.  

In addition, the ADR data transmission algorithm, is employed in order to improve the 

energy efficiency of LoRa wireless networks in (Peruzzo & Vangelista, 2018). The standard ADR 

mechanism can be enabled to adjust the SF assignment and transmit power, based on the SNR 

readings obtained from the received signal. This algorithm plays an essential role in managing 

data transfer rate and transmitter power within LoRaWAN networks. The study in (Slabicki, 

Premsankar & Di Francesco, 2018) discusses how adaptive parameter configuration can improve 

network performance in dense IoT deployments. In contrast, authors in [Ksiazek & Grochla, 2021] 

investigates flexibility of the ADR algorithm and its impact on network performance under 

various operating conditions. However, the ADR algorithm exhibits several limitations, which 
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led to further research in this area. Recent studies have introduced improved versions of the ADR 

algorithm, including ND-ADR, ADR-MIN, and EARN (Park et al., 2020). These advanced 

approaches utilize the average Signal-to-Noise Ratio (SNR) to adjust data transmission 

parameters, leading to enhanced PDR and reduced EC (Babaki, Rasti & Taskou, 2020; Jiang et al., 

2021). 

Optimizing parameters for LoRa wireless network nodes involves utilizing one of three 

ML methods: supervised learning, unsupervised learning, and reinforcement learning. In 

supervised learning, one of the network parameters, such as SF or TP, is most often selected and 

these parameters are predicted based on known data using regression or classification (Cuomo, 

Garlisi, Martino & Martino, 2020). In addition, regression and classification are used to predict 

collisions. Reinforcement learning provides a natural framework for optimizing parameters by 

allowing a wireless network node (agent) to interact with its environment. Through feedback 

mechanisms, such as rewards or penalties, the agent learns to identify the optimal parameters for 

efficient message transmission (Minhaj et al., 2023; Chen et al., 2022). Additionally, unsupervised 

learning is utilized to determine the most efficient operating modes of network nodes (Alenezi, 

Chai, Jimaa & Chen, 2019). 

Therefore, much of the effort in optimizing parameters for LoRaWAN wireless networks 

involves reaching a compromise between two contradictory parameters: EC and PDR. Reducing 

EC typically involves reducing TP, which in turn decreases the success rate of message delivery. 

 

MATERIALS AND METHODS 

The study is structured into two main stages: online and offline. The online stage involves 

three simulations of wireless networks, as illustrated in Figure 1. Optimizing network parameters 

is crucial to reduce EC and increase PDR. This optimization involves studying the 

interdependence of various parameters. As shown in Figure 1, the study utilizes four different 

simulations (Sim1, Sim2, Sim3, and Sim4) within the OMNeT++ environment using the FLoRa 

library, which incorporates essential parameters based on results of physical experiments. 

 

 
 

Figure 1. General structure of the study 

Note: compiled by the authors 
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Sim1 is intended for constructing a correlation matrix (Corr. matrix), showing the degree 

of interrelation of network parameters. Then, data collection for ML is essential to achieve 

accurate predictions of network parameters under varying conditions, conducted specifically 

during the Sim2 phase. The model that exhibits the highest predictive performance (Best model) 

is subsequently employed in collaboration with an online algorithm to identify the most optimal 

network parameters. Sim3 is designed to collect data to create a model that predicts the 

transmitter-receiver distance based on Received Signal Strength Indication (RSSI) at maximum 

TP. The distance prediction results are the input data for the best model, the output of which is 

the predicted PDR and EC for a given distance and various TP and SF options. The algorithm 

determines the most optimal values of the SF and TP parameters.  Finally, it is essential to 

evaluate the effectiveness of the predicted parameters for a specific network configuration. This 

is achieved by simulating Sim4 with the algorithm-selected network parameters and assessing 

the efficiency of the proposed system using the ADR algorithm. 

The simulation Sim1 was performed using various numbers of nodes and gateways, where 

each node transmits messages to the gateways using different parameter combinations. This 

approach enabled the collection of a comprehensive dataset, enhancing our understanding of the 

correlation between PDR and EC in LoRa networks. The simulation results are presented as a 

correlation matrix in Figure 2. 

The correlation matrix illustrates how the average EC and variance (σ) of all nodes depend 

on several parameters during message transmission: bandwidth (BW), coding rate (CR), SF, TP, 

number of nodes (N), and number of gateways (GW). Analysis of the matrix reveals that SF and 

TP exert the most significant influence on node EC. 

 

 
 

Figure 2. Correlation matrix 

Note: compiled by the authors 
 

The SF parameters ranged from 7 to 12, covering all available options. The transmit power 

varied between 2 dBm and 14 dBm. The maximum power is sufficient for successful message 

transmissions even from the most remote node. The simulation area spans 350 by 350 meters, 

with the receiving gateway positioned at coordinates 100 by 100 meters. The lognormal 

distribution model was used as a signal propagation model. The number of LoRa nodes for data 

collection in the selected area is 1046. 
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To collect the database, the parameters SF, TP and Distance will be employed as input 

value for the Sim2 simulation. During the three-day simulation period, each node will send 216 

messages. This is essential for a more precise evaluation of EC and PDR. The time between 

message arrivals follows an exponential distribution with a mean value of 1000 seconds.  When 

calculating a node's total EC, factors such as each message's sending power, airtime, and 

additional parameters are taken into account. EC and PDR were obtained as output data, as 

shown in the block diagram in Figure 3. 

 

Table 1. Simulation parameters in OMNeT++ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. Block-diagram of data collection for ML 

Note: compiled by the authors 

  

XGBoost, RBFN, and GRU were used to predict PDR and EC. 85% of the data was used for 

model training, while the remaining 15% was reserved for the testing phase. Prediction accuracy 

will be evaluated using R2, MAE, MSE, and RMSE parameters. 

The OMNeT++ network simulator provides the ability to calculate the RSSI for each Lora 

node. It uses several path loss models along the path to estimate the decrease in power of a radio 

signal as it propagates from the transmitter to the receiver. One example of such a model is the 

LogNormal Shadowing Model, which considers both deterministic path loss and random signal 

fluctuations caused by obstacles and reflections.  

The lognormal distribution model is an extension of the free space model. It adds a random 

component to the logarithmic distance function to account for shading. The model equation is 

presented below: 

Parameter Value 

Simulation time 3 d 

Simulation area 350 x 350 m 

Number of nodes 1046 

Spreading Factor SF [7-12] 

Transmit Power TP [2-14] dBm 

Path loss PL(d0) = 127.41, d0 = 40, n = 2.08, σ = 3.57 

Receiver sensitivity -137 dBm 

Carrier frequency 868 MHz 

Bandwidth BW 125 kHz 

Coding Rate CR 4/8 

Note: compiled by the authors 
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                                                   𝑃𝐿(𝑑) = 𝑃𝐿(𝑑0) + 10𝑛𝑙𝑜𝑔10(
𝑑

𝑑0
) + 𝑋𝜎                                                   (1) 

where: 𝑃𝐿(𝑑) – path losses over distances d;  

𝑃𝐿(𝑑0) – losses at reference distance 𝑑0;  

𝑛 – attenuation coefficient;  

𝑋𝜎 – random value, normally distributed with zero mean and standard deviation 𝜎. 

The lognormal distribution parameters were set as follows: PL(d₀)=127.41, d₀=40, n=2.08, 

and σ=3.57. In article (Slabicki, Premsankar & Di Francesco, 2018), a comparative evaluation of 

the lognormal distribution model implemented in OMNeT++ using real-world data is presented. 

The study demonstrate that the model achieves high accuracy in simulating signal attenuation in 

both urban and suburban environments. These parameters were calibrated based on 

measurements from various settings and showed favorable performance when compared to 

actual data. 

For the Sim3 simulation, 100 nodes were installed in the selected area. In the OMNeT++ 

environment, the powers of the received signals were obtained for each node. Leveraging the 

chosen signal propagation model, it becomes feasible to calculate the distance to a node 

transmitting at a known power level of 14 dBm. 

The proposed algorithm for optimizing the SF and TP parameters is the generation and 

enumeration of all possible options and the selection of the best depending on the necessary 

requirements as depicted in Figure 4. The operation requires only the power of the initially 

received RSSI signal, which is used to determine the distance, as outlined in section 2.5. Based on 

the obtained distance value, various parameters such as SF and TP are selected. The resulting 

data list is sent to the best model as input, yielding outputs for EC and PDR. 

  

 
 

Figure 4. Algorithm for optimizing SF and TP parameters 

Note: compiled by the authors 

 

As can be seen from Figure 4, the best model predicts output values for EC and PDR. 

Subsequently, the results from the best model are sent to the filter, the algorithm of which is 

shown in Figure 5. 

Figure 5 illustrates the operational concept of the proposed filter. Initially, the filter takes 

as input a dataset comprising 78 lines (D, SF, TP, EС, PDR). Subsequently, the PDR values of each 

row go through the conditions >5, >25, >30, >40, >50, >75, >80, as well as the maxPDR function, 

which from the entire list returns the row with the maximum PDR value and the corresponding 

TP and SF values. Rows meeting these conditions proceed to the next stage, while those not 

meeting the conditions remain in the input list. This filtering approach effectively establishes a 

lower threshold for PDR values. After each condition for the lower PDR threshold, the resulting 

dataset is further filtered based on minimum EC using the minEC function. As a result, for each 

range of PDR values, the minimum EC value and the corresponding SF and TP values are 

determined. 
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Figure 5. Filter block diagram 

Note: compiled by the authors 

 

RESULTS AND DISCUSSION 

XGBoost demonstrated the best performance in predicting EC, PDR, and distance. The 

results were as follows: prediction_EC (R2 Score - 0.99999, MAE - 3.97440, MSE - 6.16825, RMSE 

- 7.85382) and prediction_PDR (R2 Score - 0.99557, MAE - 1.71041, MSE - 6.11819, RMSE - 2.47349). 

Table 2 presents the performance metrics of three models (XGBoost, GRU, and RBFN) in 

predicting values for the variables EC and PDR. 

 

Table 2. Prediction accuracy of EC, PDR and Distance in ML models XGBoost, GRU and RBFN 

 

 

 Performance 

metrics 
EC PDR Distance 

XGBoost 

 

 

R2 0.99999   0.99557   0.99571   

MAE 3.97440   1.71041   4.75846   

MSE 6.16825   6.11819   65.40882   

RMSE 7.85382   2.47349   7.45037   

GRU R2 0.98685   0.97253   0.97520   

MAE 0.95878   4.62209   6.75299   

MSE 1.90047   38.26388   116.23087   

RMSE 1.37857   6.18578   10.78104   

RBFN R2 0.99837   0.99428   0.98162   

MAE 0.31358   1.99114   6.18024   

MSE 0.24126   7.91164   87.68931   

RMSE 0.49118 2.81276 9.18952 

Note:  compiled by the authors 
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The XGBoost model exhibited outstanding results with R2 Score close to 1 for all variables 

and the lowest MAE, MSE, and RMSE values, indicating its exceptional accuracy. The GRU model 

showed slightly lower accuracy with R2 Score ranging from 0.97253 to 0. 98685, along with higher 

MAE, MSE, and RMSE errors. The RBFN model also demonstrated high accuracy with R2 Score 

between 0.98162 and 0.99837, and moderate MAE, MSE, and RMSE values, which were lower 

than GRU but not as superior as XGBoost in some instances. 

RSSI values are essential for predicting the distance between the transmitter and the 

gateway. We have gathered RSSI values from 100 test nodes with a maximum transmit power of 

14 dBm. The predicted distances from the XGBoost, GRU, and RBFN models were compared with 

distances acquired from OMNeT++. 

All models demonstrated very high prediction accuracy, as shown in Table 2, with 

XGBoost achieving the best performance (R2 Score: 0.99571, MAE: 4.75846, MSE: 65.40882, RMSE: 

7.45037). Using these predictions, the distance to the node after the initial message transmission 

can be calculated. In subsequent steps, this distance will be utilized in the proposed algorithm. 

Figure 6 illustrates the relationship between distance and received signal power for various ML 

methods. 

 

 
 

Figure 6. Dependence of distance on received signal power 

Note: compiled by the authors 
 

In order to evaluate the performance of the proposed algorithm, a Sim4 benchmark 

simulation were conducted using 100 test nodes with varying filter parameters. The ADR 

algorithm was used for comparison. The obtained results were presented in Table 3 for diverse 

filter settings. 

Figure 6 illustrates the accuracy of EC and PDR results from GRU, XGBoost, and RBFN 

predictions compared to OMNeT++ simulations across various minimum PDR threshold values. 

The graphs highlight that XGBoost and RBFN models exhibit high accuracy. However, as the 

minimum PDR threshold increases, the alignment between model predictions and OMNeT++ 

simulations decrease, particularly evident in the PDR plot (Figure 7b). The highest accuracy is 

observed at a minimum PDR threshold of >80. Thus, we can conclude that the trained XGBoost 

and RBFN models demonstrate robust predictive capabilities." 

Using the obtained models and the proposed algorithm, we made a comparison with 

traditional ADR, for which we carried out a simulation of Sim4 with 100 nodes that sent 216 

packets over 3 days. Packets were sent with an exponential distribution and an average time 

between sendings of 1000 seconds. Figure 7 shows the gain of the XGBoost and RBFN models 

compared to the ADR algorithm depending on the value of the minimum PDR threshold. 
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                   а)                                                                      b) 
 

Figure 7. Determination of accuracy between filter result and OMNeT++ a) EC b) PDR 

Note: compiled by the authors 

 

  
                                    а)                          b) 
 

Figure 8. Determination of optimal filter parameters: a) XGBoost, b) RBFN 

Note – compiled by the authors 
 

From the graphs, it is obvious that increasing the minimum PDR threshold enhances the 

success rate while reducing EC. The equilibrium point occurs where the PDR and EC graphs 

intersect at the lower filter threshold of minPDR > 27.5. At this point, we achieve improvements 

in both EC and PDR. In the optimal prediction model, XGBoost, the success rate in EC was 20.43% 

higher and in PDR was 23.72% higher compared to ADR. Moving towards an increase in the 

lower PDR threshold will lead to an increase in the network PDR, but the EC also increases, which 

is undesirable for network efficiency. Conversely, when moving towards a lower PDR threshold, 

most messages will not be delivered, even though it improves energy efficiency. 

The main difference of our approach is its ability to find the optimal balance between EC 

and performance, which significantly improves the overall efficiency of the LoRaWAN network. 

Our proposed method not only improves EC and PDR, but also has high accuracy in predicting 

optimal parameters. We selected ML methods due to their ability to efficiently process large 

amounts of data and accurately predict parameters, making them ideal for optimization problems 

in dynamic and resource-intensive networks. 
 

CONCLUSION 

This paper introduces an optimization algorithm for SF and TP parameters in LoRaWAN 

wireless networks using different ML methods. XGBoost, GRU, and RBFN techniques were 

utilized to predict optimal parameters, where XGBoost demonstrated the highest accuracy, 

accounting for 99.5%. The results indicate that our optimized algorithm enhanced energy 

efficiency by 20.43% and improved PDR value by 23.72% compared to traditional ADR methods. 
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The key finding of this research is to reach balance between EC and PDR, which can 

considerably enhance the overall performance of the LoRaWAN network. We proposed an 

optimal lower limit of PDR that achieves a trade-off between EC and PDR compared to 

traditional ADR. The relevance of the study lies in its contribution to optimizing LoRaWAN 

network parameters, which is essential for the long-term and reliable operation of IoT 

devices.  

The obtained data was processed and validated in the OMNeT++ simulator using the 

FLoRa library. The simulation results are consistent with the model prediction results. 
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