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DEVELOPMENT OF NEW CONTROL ALGORITHMS FOR A ROBOTIC ARM  
EQUIPPED WITH A 3D SCANNING OR MACHINE VISION SYSTEM 

 

3D СКАНЕРЛЕУ НЕМЕСЕ МАШИНАЛЫҚ КӨРУ ЖҮЙЕСІМЕН ЖАБДЫҚТАЛҒАН  
РОБОТ-МАНИПУЛЯТОРҒА АРНАЛҒАН ЖАҢА БАСҚАРУ АЛГОРИТМДЕРІН ӘЗІРЛЕУ 

 

РАЗРАБОТКА НОВЫХ АЛГОРИТМОВ УПРАВЛЕНИЯ РОБОТА-МАНИПУЛЯТОРА,  
ОСНАЩЕННОЙ СИСТЕМОЙ 3D СКАНИРОВАНИЯ ИЛИ МАШИННОГО ЗРЕНИЯ 

 
Abstract. Manipulator robots perform many complex actions and solve important tasks in the industry 

(welding, cutting, spaying, sorting, etc.). This article discusses the geometric problems of the kinematics of 
the robot, in order to ensure the smoothness of movement without instantaneous stops at the corners of the 
trajectory. The problem of equipping the robot with additional 3D scanning or machine vision system to 
control such situations is considered. It is proposed to use a method for recognizing the dominant points of 
the trajectory, in particular, corner points, based on image processing with specialized masks. 

Keywords: robotic arm, smooth trajectories, corner points. 
 
Аңдатпа. Робот-манипуляторлар көптеген күрделі іс-қимылдарды орындайды және өнеркәсіп-

тегі маңызды міндеттерді шешеді (дәнекерлеу, кесу, бүрку, сұрыптау және т.б.). Бұл мақалада 
траекторияның бұрыштарында лезде тоқтаусыз қозғалыстың тегістігін қамтамасыз ету үшін 
робот кинематикасының геометриялық мәселелері қарастырылады. Мұндай жағдайларды 
бақылау үшін роботты қосымша 3D сканерлеу немесе машиналық көру жүйелерімен жабдықтау 
мәселелері қарастырылады. Суреттерді мамандандырылған маскалармен өңдеуге негізделген 
траекторияның тірек нүктелерін, атап айтқанда бұрыштық нүктелерді тану әдісін қолдану 
ұсынылады. 

Түйін сөздер: робот-манипулятор, тегіс траекториялар, бұрыштық нүктелер. 
 
Аннотация. Роботы-манипуляторы выполняют множество сложных действий и решают 

важные задачи в промышленности (сварка, резка, напыление, сортировка и т.д.). В данной статье 
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рассматриваются геометрические проблемы кинематики робота, с целью обеспечить глад-
кость движения без мгновенных остановок в углах траектории. Рассматриваются проблемы 
оснащения робота дополнительно системами 3D сканирования или машинного зрения для кон-
троля таких ситуаций. Предлагается использование метода распознавания доминирующих то-
чек траектории, в частности, угловых точек, на основе обработки изображений специализиро-
ванными масками. 

Ключевые слова: робот-манипулятор, гладкие траектории, угловые точки. 

 

Introduction. The robot manipulator has become an integral part of modern industrial automa-

tion. Currently, the use of robotic manipulators in industry is steadily expanding, robots are used 

for coating, loading and packaging operations, on assembly lines of automotive and machine-

building enterprises, etc., since their characteristics allow the technological process to be carried 

out with precision accuracy and high productivity. It is also important that automation of produc-

tion with the help of robots allows for long-term technological processes in difficult or harmful 

for human conditions.  

Robot manipulators are controlled by programmable controllers. Most industrial controllers 

use a general control principle - a linear proportional control algorithm for each link, where the 

spatial position of the working tool is corrected, and the feedback signal is the position of the tool 

[1]-[2]. This method is suitable for low speeds and requires movement along a given trajectory in 

time. However, modern production requires more flexible process control in order to increase the 

speed of passing a given trajectory and set the trajectory without preliminary calculations for each 

individual link of the robot. A large number of studies all over the world are currently devoted to 

the solution of this problem, such as papers [3]-[11], however, the solution is not unambiguous 

and varies depending on the control of specific processes. 

Thus, the development of new control methods for a multi-link robot manipulator is in the 

focus of world scientific research, representing significant scientific and practical interest in rela-

tion to specific technological processes. 

Works [12]-[16] are devoted to the application of new algorithms for controlling a robot ma-

nipulator performing microplasma spraying.  In these works, the robot moves according to a dig-

ital 3D model of the covered part, while a 3D model of an industrial product is obtained by 3D 

scanning it by the same robot manipulator.   

The purpose of this study was to carry out a theoretical justification for the automatic trajectory 

planning of the working tool of the robot performing plasma spraying of coatings, to implement 

the generation of the motion program of the robot manipulator based on 3D scanning data and to 

consider the issues of equipping the robot with an additional independent machine vision system 

using the method of recognition of dominant points of the trajectory, in particular, corner points. 

Theory and methods of research. As described in authors previous papers [12]-[16], a new 

scheme of robotic 3D scanning has been developed and implemented. According this scheme, 

measurements in the nodes of the scanning grid make once, and here is a justification for why 

single measurements at the nodes of the selected scanning grid are preferable.  

Firstly, the speed of triangulation distance sensors is so high that it allows scanning from a 

moving sensor, without stopping at the nodes of the scanning grid. The controller of the robot 

manipulator allows reading the current spatial position of the working tool on request, and the 

applied triangulation distance sensors are equipped with a network interface that allows measure-

ment on request. During the scanning process, a pair of requests are sequentially executed from 

the control computer - a request to take measurements to the distance sensor and a request to 

transfer the coordinates of the working tool to the controller of the robot manipulator. The time 

interval between these two requests is so small that with a reasonable choice of the sensor move-

ment speed, the distance traveled by the sensor during this time interval can be neglected. Such a 
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scanning scheme allows you to significantly increase the scanning performance (in comparison 

with the scheme in which the manipulator stops at the nodes of the scanning grid) and, moreover, 

to carry out a large number of measurements necessary for accurate restoration of the surface 

from the noisy data of the triangulation distance sensor. 

Secondly, with an equal total number of measurements, a scheme with single measurements at 

multiple points distributed over the scanned surface has an advantage in the accuracy of surface 

reconstruction over a scheme with multiple measurements at more sparse scanning points. When 

using this scanning scheme, the sensor trajectory is a polyline lying in a horizontal plane. The tra-

jectory consists of U-shaped segments covering the scanning area. In this case, the working sections 

of the trajectory (segments of a broken line, when moving along which the distance sensor is inter-

rogated) are segments of parallel lines located at equal distances from each other. The scan data is 

a point cloud. Strictly speaking, this point cloud is an unordered set of triples of Cartesian coordi-

nates of points on the scanned surface. With the chosen scanning scheme, the first pair of coordi-

nates (the position of the sensor on the plane of the sensor trajectory) is measured with a high degree 

of accuracy, while the third coordinate (the distance from the plane of the sensor trajectory to the 

point of the scanned surface) can be considered as a random variable, the mathematical expectation 

of which corresponds to the actual value of this coordinate. Thus, an attempt to restore the surface 

using direct 2D interpolation methods based on scanning data will lead to unacceptably large errors. 

In order to overcome these difficulties, a data processing algorithm using regression analysis meth-

ods to construct a local parametrizable surface model has been developed [14]. The algorithm [14] 

includes a surface segmentation procedure, during which local models of overlapping surface seg-

ments are combined into regions having a homogeneous geometric structure (described by a general 

analytical parametrizable model). Such a segmentation procedure is necessary for the further for-

mation of the manipulator trajectory for two reasons: firstly, the methods to form the manipulator 

trajectory use an analytical surface model as input data; secondly, the use of segmentation methods 

allows to partially solve the problems of surface reconstruction which shape cannot be described by 

a smooth function of two variables. 

When designing the system of automatic generation of the program of an industrial robot ma-

nipulator for applying microplasma coatings to a surface of arbitrary shape, a number of assump-

tions and limitations concerning both the coating process model and the technological parameters 

of the process has been taking into consideration. Since the working tool of the manipulator is a 

movable plasma source forming a plasma jet with a stream of coating particles or a plasma jet of 

ionized particles for plasma cutting, it was assumed that in any case the plasma jet can be modeled 

by a flow of particles having the shape of a cone. It was also assumed that the distribution of the 

particle flux through the plane perpendicular to the axis of the sputtering cone is radially symmet-

ric. These assumptions are confirmed by an experimental study by Borisov Yu.S., et al [17], which 

provides data on the metallization spot (stationary case) and on the shape of the formed coating. 

Thus, the data [17] confirmed the choice of a model with a radially symmetric distribution of 

particles with respect to the cone axis. 

There are two mandatory requirements for the trajectory of the manipulator's working tool. 

First, at any given time, the axis of the spraying cone must be perpendicular to the treated surface. 

When this requirement is met, the trajectory of the working tool in space will correspond to a 

curve on the treated surface, which is the geometric location of the points of intersection of the 

axis of the spraying cone with the surface. In the future, we will call this curve a trace of the 

trajectory of the manipulator's working tool. The second requirement for the trajectory of the 

manipulator's working tool was the constancy of the distance from the working tool to the surface 
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throughout the trajectory. 

It is also assumed that the treated surface can be described as a piecewise-smooth function, 

and in areas whose geometric dimensions are of the order of the geometric dimensions of the 

deposition spot, the surface can be approximated by a plane with a sufficient degree of accuracy. 

The generated trajectory of the manipulator's working tool has a U-shaped shape, while the 

trajectory trace on the surface consists of working segments representing equidistant curves on 

the surface and segments, during the passage of which no spraying is carried out, but the manip-

ulator maneuver is carried out with the aim of reaching an adjacent working segment of the tra-

jectory. It is assumed that the coating area is bounded by a closed curve on the surface.  

Authors apply a trajectory generation scheme in which the working segments of the trajectory 

are constructed as equidistant copies of one selected working fragment of the trajectory. Summa-

rizing the experience of practical application of methods of forming the trajectory of a working 

tool of this class, described in [18], [19], it can be argued that the choice of the starting trajectory 

has a strong influence on both the quality of the coating and the productivity of the processing 

process. 

Speaking about the influence of the choice of the starting trajectory, we mean, first of all, the 

uniformity of the thickness of the applied coating (the meaning of this statement will be revealed 

later when substantiating the method of forming the starting trajectory that we use). 

Most of the existing trajectory formation algorithms [18]-[23] use the secant plane method to 

form the starting fragment of the trajectory, in which the line of intersection of the surface with a 

certain plane is taken as the starting fragment of the trajectory. To form the starting fragment of 

the trajectory, we use a specially selected geodesic line on the surface. Here are the necessary 

definitions and justifications for choosing a starting segment of this type. 

For curves on surfaces, the concepts of normal and geodesic curvature are separated. Below 

we give definitions of the concepts of normal and geodesic curvature of a curve on a surface, 

based on the concept of the curvature vector of the curve. Let 𝜏(𝑠) be a function describing the 

dependence of the tangent to some smooth curve of a vector of unit length on the natural parameter 

𝑠. Then the curvature vector of the curve, �⃗⃗� is determined by the formula (1) 

�⃗⃗�(𝑠0) = (
𝑑𝜏

𝑑𝑠
) |𝑠=𝑠0

 

 

(1) 

Now consider a smooth curve 𝛾 on the surface 𝑆 passing through the point 𝑋 =  (𝑥, 𝑣) lying 

on 𝑆. Let  𝑟 = 𝑟(𝑠) = 𝑟(𝑢(𝑠), 𝑣(𝑠)) be some natural parametrization of the curve 𝛾 . At the point 

𝑋 we find the unit vector 𝜏 tangent to 𝛾. The analytical expression for 𝜏  is given by equation (2) 

𝜏 =
𝑑𝑟

𝑑𝑠
 

 

(2) 

Denote the normal to the surface 𝑆 at point 𝑋 as n, and define  the vector �⃗⃗� = �⃗⃗� ×  𝜏 . It is not 

difficult to show that the triple of vectors 𝜏, �⃗⃗�, �⃗⃗� is linearly independent, which makes it ibpossle 

to represent the curvature vector of the surface 𝑘 as a decomposition over the vectors of the basis 

𝜏, �⃗⃗�, �⃗⃗� (3) 

�⃗⃗� = 𝛼 ∙ 𝜏 + 𝛽 ∙ �⃗⃗� + 𝛿 ∙ �⃗⃗� (3) 

It is proved (see for example [24]) that 𝛼 = 〈�⃗⃗�, 𝜏 〉 = 0, and the coefficients 𝛽, 𝛿 are deter-

mined by equations (4) and (5) and have special names. 

𝛽 = 𝑘𝑛 = (�⃗⃗�, �⃗⃗�) (4) 
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where  𝑘𝑛 is called the normal curvature of the surface. 

𝛿 = 𝑘𝑔 = (�⃗⃗�, �⃗⃗�) (5) 

where 𝑘𝑔 is called the geodesic curvature of the surface. 

Obviously, the normal curvature of any curve on the plane is zero at any point of the curve. 

The term «geodesic line on a surface» is used to denote a curve on a surface whose geodesic 

curvature is zero at any point. Thus, geodesic lines on the plane will be straight lines. In addition, 

in the general case, the geodesic line connecting two points on the surface is the curve of the 

smallest length, of all the curves on the surface passing through these two given points. Thus, 

geodesic curvature is a measure of curvature in the internal geometry of the surface, and geodesic 

lines play the same role in the internal geometry of the surface as straight lines in geometry on 

the plane. Let the curve on the surface be a trace of the spray nozzle. Figure 1 shows three possible 

cases of the influence of the geodesic curvature of the trace (GCT) of the trajectory on the uni-

formity of the coating applied. 
 

   
а b c 

 

Figure 1. The influence of the geodesic curvature of the trace (GCT) on the uniformity of the coating 

applied a – GCT = 0, uniform distribution of the coating on both sides of the trace; b – GCT = const, the 

thickness of the coating increased in the direction of curve bending; c – GCT variable, uneven distribution 

of the coating on both sides of the trace [18] 

 

It follows from Fig. 1 that in the case (a) when the geodesic curvature of the trace (GCT) is 

zero, the sprayed material will be distributed evenly on both sides of the trace trajectory. Case (b) 

corresponds to the constant geodesic curvature of the trajectory. It is obvious that most of the 

sprayed material will accumulate in the direction of the curve bend. It is also clear that in the case 

of a variable geodesic curvature of the trace, case (c), the coating thickness will be distributed 

unevenly on both sides of the trace. This visual examination suggests that the optimal choice of 

the starting segment of the trajectory will be one of the geodesic lines on the surface. In addition, 

this consideration shows that it is desirable to choose the starting segment in such a way that the 

trajectory segments obtained by shifting the starting segment have as little geodesic curvature as 

possible. 
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During the development of an automatic trajectory planning system and the generation of a 

robot manipulator movement program based on the formed three-dimensional model of the prod-

uct, three ways of generating the starting fragment have been tested. These three ways of gener-

ating the starting fragment included two automatic and one semi-automatic. The first automatic 

method was based on the minimum height criterion proposed in [25], the second, original method 

was based on sorting the directions of the starting segment and evaluating the quality of the gen-

erated trajectories according to an integral criterion, the third method was semi-automatic, in 

which the operator sets the point and direction of the starting geodesic curve in it. 

Let's explain the task of automatically generating a robot manipulator program along a given 

trajectory of the working tool. The mathematical formulation of the problem will be given as a 

problem of optimal approximation of a spatial curve by a sequence of geometric primitives with 

remarks on the software implementation of algorithms for automatic generation of a robot manip-

ulator program. 

The result of the procedure for generating the trajectory of the working tool of the robot ma-

nipulator is a sequence of points in three-dimensional space, and we can assume that these points 

lie on a piecewise smooth spatial curve. This sequence of points will be considered as a sequence 

of vertices of a polyline in space approximating the "ideal" trajectory of the working tool. Before 

formulating the problem statement, several important circumstances must be noted.  

First of all, the command system of the Kawasaki industrial robot controller includes the 

MOVE command, the format of which is given as in equation (6): 

𝑀𝑜𝑣𝑒(<  𝑥1, 𝑦1 >)(< 𝑥2, 𝑦2 >) < 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 > (6) 

Thus, it is practically possible to generate a robot manipulator program, which consists in 

translating the description of the polyline into a sequence of MOVE commands, during which 

each segment of the polyline is assigned one MOVE command. 

However, this method of generating a robot manipulator program has significant disad-

vantages of a fundamental nature. For example, a correctly defined robot manipulator program 

may correspond to a physically impracticable movement process. As an example, let's consider 

a program consisting of two MOVE commands that specify the trajectory of the manipulator in 

the form of a polyline 𝐴𝐵𝐶, consisting of two segments 𝐴𝐵 and 𝐵𝐶 perpendicular to each other. 

We will assume that the modulus of the velocity of the working tool of the manipulator v on 

both segments of the polyline is the same (the direction of the vector �⃗� will change during the 

movement, but not the modulus of the vector 𝑣 = |�⃗�|). Such a program will be formally correct 

and will be accepted for execution by the controller of the robot manipulator. However, it is 

obvious that the passage of such a trajectory with a constant modulo velocity is physically im-

possible, since at point B the acceleration of the working tool must be infinite (the velocity 

vector cannot change by a jump). Practically, when executing such a program, the manipulator's 

working tool will stop at point 𝐵 and, accordingly, the segments 𝐴𝐵 and 𝐵𝐶 will not be trav-

ersed at a constant speed v set by the manipulator program and, in general, the movement along 

the segments 𝐴𝐵 and 𝐵𝐶 will not be uniform. Obviously, problems of this kind will arise when 

passing any trajectory in the form of a polyline, whatever the angles between adjacent segments 

of the polyline. 

Two factors can be distinguished that affect the quality of execution of the program synthe-

sized in this way: 

1. the maximum value of the angle between the segments of the polyline of the trajectory; 

2. the magnitude of the modulus of the speed of movement of the working tool of the manip-

ulator. 
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Movement along the same trajectory in the form of a polyline will be the more different from 

a uniform one, the greater the speed of movement of the working tool set by the MOVE com-

mands. Thus, the considered «direct» method of generating a robot manipulator program is poorly 

suited for tasks in which precise compliance with the specified time parameters of the trajectory 

is required. 

An alternative to the method of generating a manipulator program, in which the generated 

program consists of a sequence of MOVE commands, is to use the CIRCLE command of the AS 

language, along with the MOVE commands. The trajectory of the manipulator in this case will be 

a curve, which is a sequence of geometric primitives - segments of straight lines and arcs of cir-

cles. In conventional mathematical terminology, such a curve can be described as follows: A 

curve parameterized by a natural parameter is given by the dependence of the radius vector 𝑟 ⃗⃗⃗ 

corresponding to the point of the curve on the natural parameter 𝑠 - the length of the curve arc. 

The segment [0, 𝐿], where 𝐿 is the length of the curve, is divided by 𝑛 − 1 points 

𝑠1, 𝑠2, . . . , 𝑠(𝑛−1) into 𝑛 segments [0, 𝑠1), (𝑠1, 𝑠2], . . . , (𝑠(𝑛−1), 𝐿]. 

The sequence of points 𝑠1, 𝑠2, . . . , 𝑠(𝑛−1) is assumed to be increasing. The function 𝑟(𝑠) is 

given by the relations (7). 

𝑟(𝑠) = {

𝑟1(𝑠), 𝑠 ∈ [0, 𝑠1)

𝑟2(𝑠 − 𝑠1), 𝑠 ∈ (𝑠1, 𝑠2]
…

𝑟𝑛(𝑠 − 𝑠𝑛−1), 𝑠 ∈ (𝑠𝑛−1, 𝐿]

 

 

(7) 

Moreover, each of the functions 𝑟1(𝑠), 𝑟2(𝑠), . . . , 𝑟𝑛(𝑠) describes one of two types of graphic 

primitives - a straight line segment (described by functions of the form 𝑟(𝑠) = 𝑟0 + 𝑠 ∙ 𝑒 , where 

𝑒 is a direction vector of unit length) or a circular arc (described). Let us formulate the require-

ments for the approximating curve: continuity. As will be shown below, this requirement is met 

automatically in the methods we propose; 

1. Continuity. As will be shown below, this requirement is met automatically in the methods 

we propose; 

2. Smoothness. Smoothness of the first order is guaranteed, i.e. continuity of the function 

𝑟′(𝑠) =  
𝑑

𝑑𝑠
𝑟(𝑠). 

Geometrically, the vector 𝑟′(𝑠) is a unit length vector tangent to the curve. If the trajectory of 

the working tool of the manipulator is not a smooth curve, then it is physically impossible to pass 

such a trajectory at a constant modulo speed, that is, the working tool will stop before the break 

points, and then accelerate after passing the break point. The requirement of smoothness of the 

trajectory for the case when the trajectory is a sequence of geometric primitives allows a clear 

geometric interpretation. Adjacent arcs of circles and segments of straight lines must be conju-

gated with each other. The procedure for conjugating segments with an arc of a circle is used in 

our proposed method for generating a manipulator program. 

3. Compliance with the specified approximation accuracy. The approximation accuracy is 

specified by a numerical criterion. The approximation procedure is constructed in such a way 

that the distance from any point of the trajectory curve to the nearest point of the approximating 

curve does not exceed this threshold value (approximation accuracy criterion). Thus, the tech-

nical task of automatically generating a program for the movement of a robot-manipulator along 

a given trajectory can be divided into two phases: Building an approximation of the trajectory 

of a curve, which is a sequence of geometric primitives, and translating the result of the first 

phase into a sequence of MOVE and CIRCLE commands of the AS language. This phase, the 
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result of which is a text file containing the program of the manipulator, we called the phase of 

translation of the description of the sequence of geometric primitives into the program of the 

robot-manipulator. 

When developing software that implements algorithms for automatic generation of a robot 

manipulator program along a given trajectory, the generation program is divided into two software 

modules. The output result of the first module is a text file containing a textual description of a 

sequence of geometric primitives in the form of an 𝑠 - expression. This text file serves as an input 

data source for the module for translating a description of a sequence of geometric primitives into 

a robot manipulator program. The translation module itself consists of an 𝑠 - expression parser 

designed to read the input file, and the translation block itself. The software implementation of 

the parser and the translation unit is a standard task, let's consider in more detail the problem of 

optimal approximation of a spatial curve by a sequence of geometric primitives and methods of 

curve approximation by a piecewise linear function and their application to solving the approxi-

mation problem.  

Thus, an original method for approximating plane curves by a sequence of geometric primi-

tives based on the use of the angular characteristic function of the curve has been developed. This 

method also uses piecewise linear approximation, namely the method of CAL (Chord and Arc 

Length) - algorithm. The essence of the CAL algorithm is to select several special points on the 

curve (dominant points) so that the approximation accuracy criterion is met, the convergence of 

which is strictly proven [25]. The algorithm can be represented by the following sequence of 

steps: 

1) Starting from any point on the closed curve (at the first point on the open curve), calculate 

the chord length 𝐶 and the arc length 𝑆 of the curve, for each subsequent point, and when the 

criterion value 
1

2
∙ √𝑆2 − 𝐶2 is greater than the deviation threshold mark the previous point as 

dominant. 

2) Combine the dominant points by testing each dominant point found - can it be eliminated 

without exceeding the deviation threshold. 

3) Calculate the (parametrized) straight line of least squares for the set of points on the curve 

enclosed between the last two dominant points. 

4) Find the point closest to the last dominant point on the constructed straight line.  

5) Select the middle of the straight line segment connecting the point found in the previous 

step with the last dominant point as the last point of approximation. 

With a reasonable choice of the deviation threshold value, the algorithm makes it possible to 

approximate curves of complex shape with polylines with a small number of links. 

Despite the fact that CAL algorithm was originally developed for plane curves, it was subse-

quently applied to problems of approximation of curves in three-dimensional space, since both 

the algorithm itself and the proof of its convergence do not undergo any changes when moving to 

the case of approximation of a spatial curve.  Thus, CAL algorithm had been adapted to solve the 

approximation of the trajectory of a smooth curve, which is a sequence of segments and arcs of a 

circle. To do this, it is enough to pair adjacent segments of a polyline with arcs of circles. As can 

be seen from Fig. 2, the radius of the mating circle is bounded from above by the value 𝑅𝑚𝑎𝑥, 

determined by the formula (8) 

𝑅𝑚𝑎𝑥 = 𝑚𝑖𝑛{𝑙1, 𝑙2} ∙ 𝑐𝑡𝑔 (
𝜑

2
) 

 

(8) 

where 𝑙1, 𝑙2  are the lengths of adjacent segments of the polyline, and 𝜑 is the angle between 

adjacent segments. Thus, for each vertex of the polyline, the radius of the mating circle can be 
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selected from the interval [0, 𝑅𝑚𝑎𝑥]. 

When constructing the algorithm for choosing the interface radius, authors proceeded from the 

considerations that the choice of the radius is a compromise between two extremes. On the one 

hand, the choice of the maximum possible value of 𝑅𝑚𝑎𝑥 may lead to an unacceptably large ap-

proximation error, on the other hand, the choice of an excessively small interface radius may lead 

to unacceptable restrictions on the speed of movement of the working tool. Let us explain the last 

statement: when moving along the arc of a circle of radius R with a velocity constant modulo v, 

the magnitude of the centripetal acceleration  
𝑣2

𝑅
  is inversely proportional to the radius and pro-

portional to the square of the velocity. 
  

 
 

Figure 2. Conjugation of segments by the arc of a circle 

 

It is clear that with a fixed value of the speed of movement, there is a lower maximum permis-

sible threshold of the radius at which the manipulator drive will be able to provide such a trajec-

tory passage. In addition, when moving at a constant speed in a straight line, the acceleration of 

the working tool is zero, and it is physically impossible to change the amount of acceleration by 

a jump – when passing the joint, the uniformity of movement is somehow violated. Thus, in order 

to comply with the time parameters of the trajectory, it is desirable to increase the radius of the 

mating circle. As a compromise solution, we use an algorithm for choosing the radius of the mat-

ing circle, based on calculating the estimate of the approximation error 𝛿 by the formula (9) 

𝛿(𝑅) =  
(1 − cos (

𝜑
2

))

cos (
𝜑
2

)
∙ 𝑅 

 

(9) 

At each point of articulation, the value 𝑅𝑚𝑎𝑥 is calculated according to the formula (8), then 

the corresponding error 𝛿𝑅𝑚𝑎𝑥 = 𝛿(𝑅𝑚𝑎𝑥) is calculated. Then 𝛿𝑅𝑚𝑎𝑥 is compared with the spec-

ified threshold value of the error 𝛿𝑚𝑎𝑥. In the case of  𝛿𝑅𝑚𝑎𝑥 ≤ 𝛿𝑚𝑎𝑥, the value 𝑅𝑚𝑎𝑥  is chosen 

as the radius of the mating circle. Otherwise, the radius of the mating circle is calculated by the 

formula (10) 
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𝑅 =  
𝑐𝑜𝑠 (

𝜑
2

)

(1 − 𝑐𝑜𝑠 (
𝜑
2

))
∙ 𝛿𝑚𝑎𝑥 

 

(10) 

The described algorithm, despite a number of attractive qualities: small computing capacity, 

guaranteed accuracy of approximation and ease of software implementation, has a significant 

disadvantage, introducing approximation errors. If we submit a curve representing the arc of a 

circle to the input of the algorithm, then at the output we will get a sequence of segments conju-

gated by the arcs of the circle, and not the desired result, that is, a sequence of one element - the 

arc of the circle coinciding with the input arc. 

Thus, an algorithm for optimal approximation of a flat curve by a sequence of geometric prim-

itives: straight line segments and circular arcs has been developed. The algorithm is based on the 

use of a special mathematical construction introduced by us into consideration – the function of 

the angular characteristic of the curve.  

Let's give a geometric definition of the function of the angular characteristic of the curve.  We 

will determine the position of the point 𝑀 on the curve by the arc length of the curve 𝐴𝑀.  

We denote 𝑒(𝑠) the tangent vector, which is the guiding vector of the line touching 𝛾 at the 

point 𝑀(𝑠). Then we can define the function 𝛼(𝑠), assuming that for a given arc length 𝑠, 𝛼(𝑠) 

is the angle between the vectors 𝑒(𝑠) and  �⃗�0 (see Fig. 3). 
 

 
 

Figure 3. Geometric definition of the function 𝛼(𝑠) 

 

The function 𝐴𝑛𝑔(𝑒1, 𝑒2) has been analytically defined on the set of ordered pairs of vectors 

of unit length 𝐸 × 𝐸, where the set of two-dimensional vectors of unit length 𝐸 =
{𝑒 ∈ 𝑅2| |𝑒| = 1} has been denoted. The range of values of the 𝐴𝑛𝑔 function will be the segment 

of the real line 𝐷 = [−𝜋, 𝜋]. For an accurate definition, we introduce the function 𝑆: ℝ2 × ℝ2 →
ℝ, defined by the expression (11): 

𝑆(�⃗�, �⃗⃗�) =  𝑎𝑥 ∙ 𝑏𝑦 − 𝑎𝑦 ∙ 𝑏𝑥 (11) 

Geometrically, the function 𝑆(�⃗�, �⃗⃗�) is the oriented area of a parallelogram spanned by the 

vectors �⃗� = (𝑎𝑥 , 𝑎𝑦) and �⃗⃗� = (𝑏𝑥, 𝑏𝑦). Let 𝑒1, 𝑒2 ∈ 𝐸 and 𝑒1 = (cos(𝛼), sin(𝛼)), 𝑒2 =
(cos(𝛽), sin(𝛽)). Then, obviously, equality (12) is valid: 

𝑆(𝑒1, 𝑒2) = sin(𝛽 − 𝛼) (12) 

Now we can define the function 𝐴𝑛𝑔 by equality (13): 

𝐴𝑛𝑔(𝑒1, 𝑒2) = 𝑎𝑟𝑐𝑠𝑖𝑛(𝑆(𝑒1, 𝑒2)) (13) 

In the future, speaking about the angle 𝛼 between two nonzero vectors  �⃗� and �⃗⃗�, we will mean 
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the value (14) 

𝛼 = 𝐴𝑛𝑔 (
�⃗�

|�⃗�|
,

�⃗⃗�

|�⃗⃗�|
) 

 

(14) 

If the length of the entire curve 𝛾 is 𝐿 (i.e. 𝑠(𝐵) = 𝐿, then the function 𝛼(𝑠)  is defined on the 

interval 𝑠 ∈ [0, 𝐿]. Let's define the function 𝜃(𝑥)  by the expression (15) on the interval [0,1]: 

𝜃(𝑥) =  𝛼(𝑥 ∙ 𝐿) (15) 

We will call 𝜃(𝑥) the function of the angular characteristic of the curve 𝛾 (or simply the an-

gular characteristic 𝛾). 

Properties of the angular characteristic function: 

6) If the curve 𝛾 is a straight-line segment, then its angular characteristic function 𝜃(𝑥) is 

determined by the formula (16) 

∀𝑥 ∈ [0,1]  𝜃(𝑥) = 0 (16) 

7) If the curve 𝛾 is an arc of a circle of radius 𝑅, which is cut off by the angle 𝜑, then 

regardless of the magnitude of 𝑅, its angular characteristic function will be a linear function of 

the form (17) 

𝜃(𝑥) =  𝜑 ∙ 𝑥 (17) 

These properties make it possible to effectively apply the function of the angular characteristic 

of the curve to the problem of approximating the curve by a sequence of geometric primitives. 

Namely, if we perform a piecewise linear approximation of the angular characteristic function, 

then the segments of the polyline will correspond to the arcs of circles and segments, and the 

adjacent arcs of circles and segments will be conjugate, Thus, the piecewise linear approximation 

of the angular characteristic function of the curve uniquely corresponds to a smooth curve, which 

is a sequence of arcs of a circle and segments. 

Results and Discussion. Automatic planning of the working tool trajectory and generation 

of the robotic arm motion program based on 3D scanning data. Thus, the process of construct-

ing the trajectory of the working tool of the robot manipulator developed and tested in this study 

consists of two stages: at the first stage, the trace of the trajectory is constructed as a list of 

coordinates of corner points (the dominant points) lying on the corresponding spatial curve, 

then the actual trajectory of the working tool is constructed, also in the form of a list of coordi-

nates of points. At the same time, for each point of the trajectory trace, a point of the manipu-

lator trajectory is generated by shifting the normal vector to the surface in the direction by an 

amount that determines the distance from the surface to the tip of the spray cone. Non-working 

segments (maneuvering segments) are matched with a standard pattern of a sequence of coor-

dinates of points. 

The input data for the software module that generates a sequence of commands from the robot 

manipulator controller is a list of coordinates of sequentially traversed trajectory points. Since the 

trajectory of the manipulator's working tool is programmatically determined by a sequence of 

standard movement patterns of two types - movement along a straight line segment (correspond-

ing to the MOVE command group of the AS language) and movement along a circle segment 

(corresponding to the CIRCLE command group of the AS language), the main function of the 

manipulator program generation module is the optimal translation of a sequence of dominant 

points of the manipulator trajectory into a text file containing a sequence of commands of the 
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manipulator controller. Note that the easiest-to-implement method of live translation, in which 

the trajectory of the working tool is a polyline with specified vertices, does not always give satis-

factory results. Therefore, for translation, a spline interpolation procedure is used for the input 

sequence of points, followed by a segmentation procedure for the resulting smooth curve to ap-

proximate it with a sequence of geometric primitives. 

Thus, authors adapted the CAL algorithm to solve the problem of approximating the trajec-

tory of a smooth curve by a sequence of segments and arcs of a circle, and developed an algo-

rithm for optimal approximation of a flat curve by a sequence of these geometric primitives, 

introducing a special function of the angular characteristic of the curve. The approximation 

algorithm used in this work for planning the trajectory and generating the program of the ro-

botic arm has guaranteed approximation accuracy and ease of software implementation. It is 

practically important that the algorithms ensure smooth movement of the working tool of the 

robot manipulator with a constant modulo velocity along a smooth curve - a 3D model of the 

product, without the risk of undesirable large values of centripetal acceleration during manip-

ulator maneuvers. As far as the authors know, the application of trajectory planning and pro-

gram generation algorithms to the architecture of the AS language that controls the Kawasaki 

robotic arm does not appear in the literature. The algorithms have been used to control the 

robot manipulator when performing technological operations of plasma cutting and micro-

plasma coating spraying. 

To work out technological solutions at the pilot production site, the 3D scanning scheme [12]-

[16] and algorithms for segmentation, trajectory planning and generation of the robot program 

have been used, that is, an intelligent system of robotic plasma cutting and surface treatment has 

been implemented. During the operation of the system, the robot manipulator sequentially scans 

the surface with a fixed distance sensor, recreates a 3D model of the surface and performs either 

plasma cutting (with a fixed plasma cutter) or plasma spraying of the coating (with a fixed micro-

plasmotron), moving along the recreated 3D trajectory, while the robot manipulator itself per-

forms the generation of the motion program (intelligent control). 

After testing these algorithms on a pilot production site, new technological solutions were 

developed for plasma cutting of large-sized products and for spraying protective microplasma 

coatings in order to restore worn-out large-sized parts, as well as for microplasma spraying of 

biocompatible coatings. 

Dominant Points and Machine Vision. We emphasized in the previous sections the importance 

of such objects as dominant points in the process of controlling the robot manipulator. Let's give 

examples of dominant points on the surface: 

  pulse glowing dots, light indicators, minilamps; 

  round, triangular or square spots (blobs), whose centers can be selected as virtual dominant 

points; 

  vertices of corner structures where corners can have shapes 𝐿, 𝑉, 𝑇, 𝑌, 𝑋, i.e. intersection 

points of some lines, or points of convergence of two dominant boundaries. This can be called a 

smooth corner, or a curve connecting the ends of two beams; 

  segments and their end or midpoints, etc. 

As a result, the following issues arise - blob detection, corner detection, and line detection. In 

this section, we consider the problem of detecting corner points in a hypothetical formulation of 

the equipment of the robot manipulator with a machine vision system. Equipping a manipulative 

robot with a technical vision system is one of the possibilities for sensing the robot. 

The advantages of a robot equipped with machine vision system are obvious: 

  improvement of personnel safety and control of the robot workspace; 
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  the possibility of complicating the tasks to be solved and increasing the efficiency of the 

robot; 

  using detected dominant (anchor, corner, etc.) points can improve the connectivity of the 

trajectory and its smoothness; 

  additional possibilities of motion programming and part gripping. 

Machine vision is the application of computer vision for industry and production. While com-

puter vision is a general set of techniques that allow computers to see, the field of interest in 

technical vision, as an engineering branch, is digital input /output devices and computer networks 

designed to control manufacturing equipment, such as robotic arms. Technical vision is a subsec-

tion of engineering related to computing, optics, mechanical engineering and industrial automa-

tion. Vision systems use digital smart cameras, as well as image processing software to perform 

similar checks. 

Vision systems are programmed to perform highly specialized tasks, such as counting ob-

jects on the conveyor, searching for surface defects, controlling movement and actions (weld-

ing, cutting, spraying, etc.), and controlling the space safe for personnel near the robot manip-

ulator. Vision systems must "see" by examining the individual pixels of an image, processing 

them and attempting to draw conclusions using a knowledge base and a set of image processing 

and pattern recognition functions. Some vision algorithms have been developed to mimic hu-

man visual perception. The software includes many algorithms such as binarization, segmenta-

tion (search and counting details), checking an image for individual blobs of related pixels as 

image anchor points. These blobs often represent targets for part processing, capture, or manu-

facturing rejects. 

The technical aspects of pairing the robotic arm and the vision system can be found in more 

detail in the literature [26]. In this section, we will focus on the detection of dominant points, 

namely corner points. We review recently developed scalable corner detection masks with flexi-

ble geometry and hierarchical structure. 

Scalable masks. Depending on the applications, the corner itself is also called the vertex of the 

angle, that is, a separate point, and a less local object, including, in addition to the vertex, also the 

rays propagating from it, as well as the entire angular structure. In the processing of three-dimen-

sional 3D images, the sides that make up the border of the corner (generally, a polytop) are added 

to the straight lines (edges), in which the dominant changes in brightness are visually observed, 

characterizing the difference between one area of the image (corner) from another (background). 

One of the common approaches to finding corners consists in boundary detection and binarization, 

and subsequent detection procedures on a binary analogue of an image. This method is based on 

the studying the brightness of the image in the vicinity of a point for the equality to zero of the 

second derivative and a change in the sign in the direction normal to the boundary. 

In this paper we consider the group of algorithms that does not perform edge selection and 

binarization, but works directly with a grayscale image, scanning its elements with a local neigh-

borhood and calculating the correlation of a snapshot fragment with a mask programming the 

angular structure model (Fig. 4). It is assumed that the inner region of the corner is approximately 

a plateau. The size of the mask is uneven; when the image is scanned, the central element of the 

mask is placed in the center of the examined image fragment. For each element of the image, the 

values of the convolution of the fragment and the mask are calculated for its various rotations 

about the central element. The maximum absolute value of these is retained as a measure of the 

presence of a corner at a point. 

Many differentiating masks, or discrete kernels of two-dimensional convolution are known 
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[27]. Among such schemes for constructing masks, the Kirsch mask, which simulates oriented 

boundaries, stands out: 

𝐾1 =
   5     5    5
−3     0 −3
−3 −3 −3

,    𝐾2 =
−3    5     5
−3    0    5
−3 −3 −3

,    𝐾3 =
−3 −3   5
−3    0   5
−3 −3   5

 , … ,    𝐾8, 

 

(18) 

where three of eight rotated versions are shown. The considered detectors have property of non-

scalability, which creates problems for organizing fast computations. For example, scanned data 

with a 3 × 3 mask is problematic to use in calculations with large masks. Calculations with 

masks of sequentially increasing sizes contain information about the linear and areal parameters 

and the moment of the corner transition to the background area. In comparison with the Kirsh 

masks (18), a scalable masks are obtained under the assumption that the border between the 

corner structure and the background passes inside a certain pixel through its center, and not 

between two adjacent pixels along their sides or edges. Scalable 3 × 3 masks are shown for 

comparison with (18): 

𝑀2
1 =

   1    3    1
−1    0 −1
−1 −1 −1

 ,     𝑀2
2 =

 −1    1    3
−1    0    1
−1 −1 −1

,      𝑀2
3 =

 −1   −1    1
−1    0    3
−1 −1    1

, …, 𝑀2
8, 

 

(19) 

where 𝑀𝑛
𝑟  denotes the 𝑟 − 𝑡ℎ rotated version of the mask (𝑟 =  1, … , 𝑅) of 𝑁 × 𝑁 size with 

𝑁 =  2𝑛 − 1 . Let us outline in short the main priciples of scalable masks modeling. 

 

 
 

Figure 4. Principal scheme of corner approximation within a circular window. Fragment Ф is located on 

the image field with a point 𝑂 in the center. The corner structure approximately has a vertex at the point 𝑂. 

The approach to finding the corner is in the rotation of the ideal angle < 𝐴𝑂𝐵 =  𝛼 (𝑚𝑎𝑠𝑘 𝑀) and the 
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calculation of the difference ||Ф − М|| 

 

Firstly, the matrix is introduced with a possibility of expanding it to larger sizes. The vertex 

(0) is centered in the middle of the mask, the corner edges (𝑒 − 𝑠) embrace the angular body 

(𝑐 − 𝑠): 

 

Figure 5. Digital corner models. From left to right: corner of 90, 45, and 135 degrees 

 

 

 

 

(20) 

where empty cells are assigned with background values (𝑏 − 𝑠). We need some definitions 

(Fig. 5). 

Definition 1 The matrices 𝑀𝑛 of the odd size (2𝑛 −  1)2 , 𝑛 =  2, … with zero central entry 

𝑀𝑛(𝑛, 𝑛) = 0 and non central entries 𝑒, 𝑐 and 𝑏 are called scalable masks of angular structures 

provided the following conditions are satisfied: 

 A set of entries 𝐸𝑛 = {𝑒} simulating the edges of the corner consists of two digital halfines 

starting at zero point 𝑂 = {0} and spreading from it either along a column and a row, or along a 

column/row and one of the four diagonals, or along two diagonals. 

 A set of entries 𝐶𝑛 = {𝑐} of the matrix enclosed by the sides of the corner is called a body 

of the corner. 

 The remaining entries form a set 𝐵𝑛  =  𝑀𝑛 \(𝑂𝑛 ∪ 𝐸𝑛 ∪ 𝐶𝑛), called a background. 

The model of the corner mask includes the principle of self-similarity consisting in the fact 

that, as the number 𝑛 increases, the values 𝑒 of the corner sides are extended along a given 

propagation line (rows, columns, diagonals). Moreover, the values 𝑐 of the internal elements of 

the corner body are spreading from the center of the mask to its periphery, whereas the back-

ground values 𝑏 fill the mask region complementary to the corner elements. The central entry 

of the mask is chosen to be zero, as well as the sum of all mask entries. This explains the 

differentiating effect on the image, produced by convolution with a sliding mask of this type. 

Denote by |𝐸𝑛|, |𝐶𝑛|, |𝐵𝑛| and |𝑂𝑛|  ≡  1 the number of mask entries with the values 𝑒, 𝑐, 𝑏 and 

0, respectively. The number of all mask entries 𝑀𝑛 (for convenience, the superscripts are omit-

ted) equals |𝑀𝑛| =  (2𝑛 − 1)2. Let us calculate the values |𝐸𝑛|, |𝐶𝑛|, |𝐵𝑛| and write down the 

differential mask condition as follows. We can express the values|𝐸𝑛|, |𝐶𝑛|, |𝐵𝑛| in the general 
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form 

|𝐸𝑛| = 2(𝑛 − 1),     |𝐶𝑛| = (𝑛 − 1)2,    |𝐵𝑛| = (𝑛 − 1)(3𝑛 − 1) (21) 

and write down the differential mask condition as follows 

|𝐸𝑛|𝑒 + |𝐶𝑛|𝑐 + |𝐵𝑛|𝑏 = 0 (22) 

Then we arrive at the differential condition (22) in the form: 

2𝑒 + (𝑛 − 1)𝑐 + (3𝑛 − 1)𝑏=0 (23) 

Due to the scalability of matrices, we have another similar equation for an arbitrary 𝑚 

2𝑒 + (𝑚 − 1)𝑐 + (3𝑚 − 1)𝑏=0 (24) 

and, subtracting (24) from (23), obtain 

𝑐 + 3𝑏=0 (25) 

Then we substitute 𝑐 =  −3𝑏 into (23) and find the solution in terms of 𝑏: 

(𝑒, 𝑐, 𝑏) =  (−𝑏, −3𝑏, 𝑏) = 𝑏(−1, −3,1) =  −𝑏(1,3, −1) (26) 

Relatively prime weights (𝑒, 𝑐, 𝑏)  =  (1, 3, −1) constitute a scalable mask of the angles of 90 

degrees. Scalable masks, their derivation and numerical experiments with test 2D images are 

given in [28]. Such masks are derived for angles of 90, 45 and 135 degrees. Here is an example 

of a scalable mask 7 × 7(𝑛 = 4) of 45 degrees. 

 

 
 

Description of corner detection algorithm. Let Ф = Ф𝑖𝑗𝑘 denote the part of the larger image 𝑓, 

(i.e., a fragment with central pixel (𝑖, 𝑗, 𝑘)) of 𝑁 × 𝑁 size (in 2D case) and 𝑁 × 𝑁 × 𝑁 (in 3D 

case), on which the sliding window 𝑀𝑛 (𝑁 =  2𝑛 −  1) of the same size as Ф has stopped at a 

pixel (𝑖, 𝑗, 𝑘). A measure of similarity of a fragment and a rotational version 𝑀𝑛
𝑟 , 𝑟 = 1, … , 𝑅 of 

the mask 𝑀𝑛 can be obtained from the well-known identity 
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||Ф = 𝑀𝑛
𝑟||2 =  ||Ф||2 − 2〈Ф, 𝑀𝑛

𝑟〉 + ||𝑀𝑛
𝑟||2    (27) 

in the chosen norm of the Hilbert space. It follows from this relation that the fragment Ф is best 

approximated by the ideal corner mask 𝑀 by finding a maximum of the scalar product 〈Ф, 𝑀𝑛
𝑟〉, 

due to ||𝑀𝑛
𝑟||2 = 𝑐𝑜𝑛𝑠𝑡. Then the criterion for detecting a corner can be formulated in the form 

𝑄 = max
𝑟,𝑛

〈Ф, 𝑀𝑛
𝑟〉 (28) 

When the fragment Ф of 𝑁3 size, centered in the pixel with the current coordinates (𝑖, 𝑗, 𝑘) 

moves over the image field 𝑓, the scalar product of the fragment Ф with the matrix of the 

mask   𝑀𝑛
𝑟 , 𝑟 = 1, … , 𝑅 is computed: 

𝑢𝑛
𝑟 (𝑖, 𝑗, 𝑘)  = 〈Ф𝑖𝑗𝑘  , 𝑀𝑛

𝑟〉 (29) 

We calculate the image of the maximum responses among the rotations 

𝑈𝑛
𝑅(𝑖, 𝑗, 𝑘)  = max

𝑟=1,…,𝑅
|𝑢𝑛

𝑟 (𝑖, 𝑗, 𝑘)| (30) 

It is expected that the maximum response occurs with the orientation of the mask that is in the 

best agreement with the rotation of the corner observed in the fragment. The spatial extension of 

the corner along its sides can be evaluated by varying another parameter, the mask size 𝑛. To this 

end, we choose the integer 𝑍 as an estimate of the maximum size of the corner encountered, and 

calculate the image of maximum responses to the mask growth: 

𝐶𝑍
𝑅(𝑖, 𝑗, 𝑘)  = max

𝑛=1,…,𝑍
𝑈𝑛

𝑅(𝑖, 𝑗, 𝑘) (31) 

It is assumed that, with increasing the tested corner size, the response grows to the limits of 

the corner extension, and upon reaching them, some saturation of the response or a more complex 

event occurs due to the mask capturing the non-corner areas. While studying the visual properties 

of the image 𝐶𝑍
𝑅, we observe a version of the original image with increased brightness at the corner 

points. 

Now the corner points themselves can be obtained by introducing a classification threshold, 

which leaves the significant, or dominant points in the image. Many threshold search methods are 

available, including the dynamic, locally adapted thresholds [27], [28]. The problem of normali-

zation of the detection criterion remains challenging because the corners in images have different 

intensities. As a consequence, the scatter in the range of the response values 𝐶𝑍
𝑅  in (31) forms the 

basis for the terms of «strong» and «weak» corners. One of the options for selecting corners is to 

choose a given number of strong (weak) corners. It appears that the solution to these problems 

requires a complete description of the corner features in the domain of the parameters (𝑟, 𝑛, 𝑍) 

and time-consuming operations nonlinear with local extremes. 

It is known that some information is lost while performing the algorithm steps in (29)-(31). 

The hierarchical scalable approach we are developing suggests preserving results at these stages 

as features and examining the data as a whole, not only by the coordinate search for maxima 

over r and n. The algorithm allows us to sort the corner structures and then to analyze them 

according to various characteristics, for example, in terms of distributions of orientations of the 

corners. 
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The sum of the entries of the mask boundary equals zero. It means that, in addition to the 

property of masks to have a differentiating character in general (the sum of the entries is 

zero), the mask boundary also possesses this property. When the size of the growing mask 

exceeds the corner region and the boundaries of the mask reach the non-corner areas of the 

image with arbitrary values, the contribution of these regions to the criterion values can 

change, and a discord is observed. It is difficult to choose in advance the size of a mask in 

proportion to the size of the desired corner structures, and we encounter the problem of de-

tecting the moment of a significant event (jump, disorder, saturation, etc.) and changing the 

criterion. 

𝑉 − 𝑙𝑖𝑛𝑒 corner masks. Scalable masks 𝑀 are obtained under the assumption that the body of 

the angle is a two-dimensional object and fills the triangle area which consists of the proper angle 

𝐶𝑛 and the boundary 𝐸𝑛. In the images, however, there are also angles in the form of two rays 

(stripes) with a common vertex, we will denote them 𝑉. You can also say that the angle there is a 

broken 𝑉 − 𝑙𝑖𝑛𝑒 [29]. The problem arises - is it possible to build scalable masks 𝑉 in the same 

way as we did for 𝑀. Define the 𝑉 − 𝑚𝑎𝑠𝑘 model as follows (32) 

 

 

 

(32) 

Denote by |𝑆𝑛|, |𝐵𝑛| and  |𝑂𝑛| ≡  1 the number of mask entries with the values 𝑠, 𝑏 and 0, 
respectively. The number of all mask entries 𝑉𝑛 equals |𝑉𝑛| =  (2𝑛 − 1)2. Let us calculate the 

values |𝑆𝑛|, |𝐵𝑛| and write down the differential mask condition as follows. We can express the 

values |𝑆𝑛|and |𝐵𝑛|  in the general form 

|𝑆𝑛| = 2(𝑛 − 1),     |𝐵𝑛| = (2𝑛 − 1)2 − 2(𝑛 − 1) − 1 = 2(𝑛 − 1)(2𝑛 − 1) (33) 

and write down the differential mask condition as follows 

|𝑆𝑛|𝑠 + |𝐵𝑛|𝑏 = 0 (34) 

Then we have 

2(𝑛 − 1)𝑠 + 2(𝑛 − 1)(2𝑛 − 1)𝑏=0 (35) 

And 

𝑠 = −𝑏(2𝑛 − 1) (36) 

Assuming background values 𝑏 = −1, receive 𝑠 = (2𝑛 − 1), see example (37) for 𝑛 = 2 below: 

 

 

(37) 

and (38)  𝑛 = 3: 
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(38) 

Obviously, the resulting 𝑉 masks are not scalable, since they explicitly depend on the param-

eter 𝑛 as it is seen in (36). However, they can be modified and become scalable, so that with 

increasing matrix sizes contained smaller submatrices unchanged. For this you need increase the 

perimeter values s a little so that the sum of the perimeter becomes zero, how it works for scalable 

corner masks 𝑀 (39). 

 

 

 
 

 

(39) 

 

Conclusions 

1. A new algorithm to control a robotic arm has been developed, in which automatic trajectory 

planning and the formation of a motion program for the robotic arm are carried out according to 

3D scanning data of the surface of the product being processed by the robot. 

2. A new algorithm has been developed for generating a robot program and ensuring smooth 

movement of the working tool of a robot manipulator with a constant modulo speed along a 

smooth curve - a 3D model of the product, without the risk of undesirably large values of centrip-

etal acceleration during manipulator maneuvers. 

3. The practical implementation of the developed algorithms to control a robot manipula-

tor has been carried out. The algorithms for automatic trajectory planning and generation of 

the Kawasaki robotic arm program in the AS language are used to control the manipulator 

that performs the technological operations of plasma cutting and microplasma spraying of 

coatings. 

4. The use of M and V masks in practice requires extensive computational experiments to 

adapt and possibly combine them.  This is the subject of future research.  
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