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APPLICATION OF NEURAL NETWORKS FOR  
CYBERBULLYING DETECTION 

 
КИБЕРБУЛЛИНГТІ АНЫҚТАЙТЫН НЕЙРОНДЫҚ ЖЕЛІЛЕРДІ ҚОЛДАНУ 

 
ПРИМЕНЕНИЕ НЕЙРОННЫХ СЕТЕЙ  

ДЛЯ ОПРЕДЕЛЕНИЯ КИБЕРБУЛЛИНГА 
 

Abstract. Cyberbullying is a global problem affecting many people, especially children and teenagers. 
This phenomenon is common in many countries, causing psychological, emotional and social damage to 
its victims. Technologies such as social media and mobile apps exacerbate the problem by providing a 
platform for anonymous attacks. To resist cyberbullying, many organizations and governments are taking 
action, from zero-tolerance policies to legislative initiatives. Awareness raising and education also play a 
key role. At the forefront of the fight against cyberbullying is the development of neural networks that can 
automatically detect and block toxic content online. This article describes the main stages of training a 
neural network and creating an information technology based on it to protect people from such a 
phenomenon as cyberbullying. 

Key words: natural language processing, sentiment analysis, machine learning, cyberbullying, neural 
network, TensorFlow. 

 
Аңдатпа. Кибербуллинг көптеген адамдарға, әсіресе балалар мен жасөспірімдерге әсер 

ететін жаһандық мәселе. Бұл құбылыс көптеген елдерде жиі кездеседі, зардап шеккендерге 
психологиялық, эмоционалдық және әлеуметтік зиян келтіреді. Әлеуметтік медиа және 
мобильді қосымшалар сияқты технологиялар анонимді шабуылдарға арналған платформаны 
қамтамасыз ету арқылы мәселені ушықтырады. Кибербуллингпен күресу үшін көптеген ұйымдар 
мен үкіметтер нөлдік төзімділік саясатынан бастап заңнамалық бастамаларға дейін әрекет 
етуде. Ақпаратты арттыру мен білім беру де басты рөл атқарады. Кибербуллингпен күрестің 
алдыңғы қатарында улы мазмұнды желіде автоматты түрде анықтап, блоктай алатын 
нейрондық желілерді дамыту. Бұл мақалада нейрондық желіні оқытудың және оның негізінде 
кибербуллинг сияқты құбылыспен күресу үшін ақпараттық технологияны құрудың негізгі 
кезеңдері сипатталған. 

Түйін сөздер: табиғи тілді өңдеу, сентимент талдау, машиналық оқыту, табиғи тілді 
өңдеу,, кибербуллинг, нейрондық желі, TensorFlow. 
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Аннотация. Кибербуллинг – глобальная проблема, затрагивающая многих, особенно детей и 
подростков. Это явление распространено во многих странах, причиняя жертвам 
психологический, эмоциональный и социальный ущерб. Технологии, такие как социальные сети и 
мобильные приложения, усугубляют проблему, предоставляя платформу для анонимных атак. 
Чтобы бороться с кибербуллингом, многие организации и правительства принимают меры: от 
политик нулевой терпимости до законодательных инициатив. Повышение осведомленности и 
образование также играют ключевую роль. На переднем крае борьбы с кибербуллингом стоит 
разработка нейронных сетей, которые могут автоматически определять и блокировать 
токсичный контент в сети. В данной статье описаны основные этапы обучения нейронной 
сети и создания информационной технологии на её основе по борьбе с таким явлением как 
кибербуллинг. 

Ключевые слова: обработка естественного языка, сентимент-анализ, машинное обучение, 
кибербуллинг, нейронная сеть, TensorFlow. 

 

Introduction. The increase in Internet communication has led to the emergence and growth 

of one of the most acute social problems – cyberbullying. Cyberbullying can cause irreparable 

harm to the psychological and emotional health of people, cause depression and suicide[1]. A 

2022 Pew Research study found that nearly half of all teens (49%) had experienced some form 

of cyberbullying (https://www.comparitech.com/internet-providers/cyberbullying-statistics/). At 

the same time, with the development of digital technologies and the spread of social networks, 

the number of cases of cyberbullying is becoming more and more. One of the effective ways to 

detect cyberbullying is to use artificial intelligence technologies[2]. In this paper, a neural 

network model has been developed, tools, patterns and architectural solutions for network 

training have been proposed; information technology for detecting cases of bullying in social 

networks. 

Literature Review. This section examines the most current research related to the use of 

neural networks to determine cyberbullying. 

Article[3] is devoted to the development of a program for determining the sentiment of a 

text. The article substantiates the relevance of protecting society from cyberbullying. Methods 

of counteracting cyberbullying are analyzed. An indicator of the negativity of site information 

has been introduced. The work of the site blocker is discussed in detail. The use of sentiment 

analysis, which is based on the use of neural networks, is justified. For sentiment analysis of 

information flows, a program was developed in the high-level Python programming language 

with the introduction of ready-made trained neural networks into it. A dictionary based on 

themes is used. 

The main contribution of the authors of the work [4] to the study of the topic is the use of a 

method for identifying trolls in social networks, which is based on an analysis of the emotional 

state of network users and behavioral activity. To identify trolls, users were grouped into 

groups; this grouping is carried out by identifying a similar method of communication. The 

distribution of users is carried out automatically thanks to the use of a special type of neural 

networks, namely self-organizing Kohonen maps. The group number is also determined 

automatically. To determine the characteristics of users on the basis of which the distribution 

into groups is made, the number of comments, the average length of a comment and an indicator 

responsible for the emotional state of the user are used. 

The article [5] discusses the features of the procedure for automatically detecting 

cyberbullying in English-language tweets based on the Logistic Regression machine learning 

model. It is noted that this model allows you to obtain an accurate result of identifying the 

means of implementing electronic bullying, as well as automatically replenish the database with 

new cyberbullying markers, including units derived from them. 

This work [6] considered solving the problem of multi-class classification of toxic messages 

based on gradient boosting using the CatBoost library and neural networks using Keras. In 

https://www.comparitech.com/internet-providers/cyberbullying-statistics/
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particular, convolutional neural networks, neural networks with LSTM and GRU architecture 

were considered. 

The authors[7] used a corpus linguistic-statistical research tool based on the use of relational-

situational analysis, psycholinguistic indicators and dictionaries covering the vocabulary of 

emotional and rational assessment; to obtain data on the level of aggressiveness of the 

subjects, the Bass-Perry questionnaire was used; When processing the data, binary 

classification algorithms, support vector machine (SVM) and random forest (Random Forest), 

were used. 

Thus, these works show the relevance of using machine learning methods to identify 

cyberbullying on social networks. However, further research is needed to develop more accurate 

and effective models for detecting cyberbullying on social media platforms. 

Materials and methods of research. Training a neural network for text processing includes 

several steps: 

1. data collection. The first step in training a neural network is to collect enough data. In the 

case of working with text, this may include collecting text documents, testimonials, articles, or 

any other type of text content appropriate to the task; 

2. text preprocessing. After collecting the data, it is necessary to pre-process the text. This 

includes removing unwanted characters, numbers, punctuation, converting text to lowercase, 

and other operations to clean up data and simplify subsequent analysis; 

3. tokenization. The next step is to split the text into individual tokens or words. 

Tokenization helps convert textual data into a numeric form, allowing the neural network to 

work with it. Each word or character is assigned a unique identifier; 

4. creating a model. After pre-processing the data, it is necessary to create a neural network 

model. The model defines the architecture of the network, including layers, links, and 

parameters. You can choose different architectures such as Recurrent Neural Networks (RNN), 

Convolutional Neural Networks (CNN) or Transformers depending on your task; 

5. model training. After creating the model, you need to train it on the prepared data. This 

process includes feeding training examples to the model, calculating the error (loss), and 

optimizing the model parameters using the gradient descent algorithm. Training can include 

multiple epochs, where each epoch is a complete pass over all training data; 

6. evaluation and tuning of the model. After completing the training of the model, it is 

required to evaluate its performance. This may include accuracy, recall, F1 score, or other 

metrics, depending on your task. If necessary, you can tweak the model settings or change its 

architecture to improve performance. 

Each of these stages requires careful work and experimentation in order to achieve good 

results and ensure the efficient functioning of the neural network. 

The development was carried out in Python, Keras and TensorFlow were used to train the 

neural network – these are two packages from Google that are widely used in the field of deep 

learning of neural networks [8]. 

Preparing a dataset for training recurrent networks is one of the most important steps in 

creating a model. The steps that are usually included in the process of preparing a dataset for 

training recurrent networks include the following: 

1. data collection. It is important to have a large and diverse dataset for training recurrent 

networks. For this, various data sources can be used, such as social networks, news articles, 

forum posts, etc.; 

2. data cleaning. Data obtained from various sources may contain many errors, typos and 

other inaccuracies that may adversely affect the quality of the model. Therefore, it is necessary 

to clean up the data, which includes removing unnecessary characters, correcting typos, etc.; 
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3. Transform data into a number format: To train recurrent networks, the data must be 

converted into a number format that can be used as input to the model. For example, for text 

data, character-to-number encoding can be used using methods such as one-hot encoding or 

word embedding; 

4. splitting the data into training and test sets: after preparing the data and converting it into a 

numerical format, it is necessary to divide the data into training and test sets. The training set is 

used to train the model and the test set is used to check the quality of the model; 

5. Creation of sequences: Recurrent networks work with sequential data, so the data must be 

converted into sequences. For example, for text data, you can break the text into sequences of a 

fixed length. 

In general, preparing a dataset for training recurrent networks is a complex process that 

requires a lot of time and patience. However, the right approach will help to better train the final 

model and improve its performance in real use [11]. 

Morphological text analysis is an important step before training a neural network or other 

natural language processing model. It includes the analysis and analysis of words in the text to 

determine their lexical and grammatical characteristics[12]. 

The steps that can be performed in the process of morphological text analysis include the 

following concepts: 

1. tokenization. The text is broken into individual tokens, which can be words or characters. 

Tokens serve as the basic units of analysis[9]. 

2. lemmatization. Reduction of words to their lemmas (basic form). Lemmatization allows 

you to reduce the various grammatical forms of a word to a single basic form[13]. For example, 

the words “run”, “ran”, “running” will be reduced to the lemma “run”; 

3. stemming. The process of stripping affixes from a word to obtain its stem (stem). The 

result of stemming may be less precise than lemmatization, but it allows words to be reduced to 

their base form for further analysis[14]. For example, the words “run”, “ran”, “running”  can be 

truncated to the common stem “run”; 

4. extraction of syntactic relations. Analysis of connections and relationships between words 

in a sentence, such as subject and predicate, dependent and independent constructions[10]. This 

allows for a deeper understanding of sentence structure and the context in which each word is 

used. 

Morphological text analysis helps to make the text understandable for neural network 

training, as it provides information about the structure and characteristics of words[16]. 

Text tokenization is the process of converting text data into sequences of numbers (tokens) 

that can be used to train neural networks[9]. When text is used as input to a neural network, it 

must be converted to a numeric format. This can be done by breaking the text into individual 

words (tokens) and then assigning each word a unique number. 

A special dataset was used to train the neural network, which contains 14135 classified 

records in russian. The data structure is as follows: comment – user comment, toxic – comment 

toxicity score in the form of 0 and 1. You can find the full collection here: https://www. 

kaggle.com/datasets/blackmoon/russian-language-toxic-comments?resource=download. 

The collected data collection should be brought to a form that the neural network learning 

algorithm understands, therefore, first, it is necessary to bring all the words into normal form, 

and the necessary tools already exist for this. The pymorphy2, re and nltk packages were used 

for this. 

The following functions are used to convert sentences into the correct format: 

import pymorphy2 

import re 
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from nltk.corpus import stopwords 

 

TOKEN_RE = re.compile(r’[а-яё]+’) 

347roblem_stopwords = stopwords.words(“347roblem”) 

morph = pymorphy2.MorphAnalyzer(lang=’ru’) 

def tokenize_text(txt, min_lenght_token=2): 

    txt = txt.lower() 

    all_tokens = TOKEN_RE.findall(txt) 

    return [token for token in all_tokens if len(token) >= min_lenght_token] 
 

def remove_stopwords(tokens): 

    return list(filter(lambda token: token not in 347roblem_stopwords, tokens)) 
 

def lemmatizing(tokens): 

    return [morph.parse(token)[0].normal_form for token in tokens] 

def text_cleaning(txt): 

    tokens = tokenize_text(txt) 

    tokens = lemmatizing(tokens) 

    tokens = remove_stopwords(tokens) 

    return ‘ ‘.join(tokens) 
 

This code implements several functions for preprocessing text in Russian: 

1. The necessary libraries are imported: ‘pymorphy2’ for lemmatization, ‘re’ for working 

with regular expressions and ‘stopwords’ from the NLTK library for removing stop words. 

2. The regular expression TOKEN_RE is defined, which only searches for Russian words 

and ignores all other characters in the text. 

3. A list of Russian stop words is created and the morphological analyzer pymorphy2 is 

loaded. 

4. The tokenize_text function receives the text txt and the optional argument 

min_lenght_token (the minimum length of the token) and performs the following steps: 

• Converts all text to lower case. 

• Searches for all tokens (words) that match the regular expression TOKEN_RE. 

• Returns a list of tokens whose length is greater than or equal to min_lenght_token. 

5. The remove_stopwords function receives a list of tokens and returns a new list without 

stop words from the list of Russian stop words. 

6. The lemmatizing function takes a list of tokens and returns a list of lemmas (normal forms 

of words) using pymorphy2. 

7. The text_cleaning function receives the text txt and performs the following steps: 

• Tokenizes text using the tokenize_text function. 

• Lemmatizes tokens using the lemmatizing function. 

• Removes stop words from tokens using the remove_stopwords function. 

• Concatenates the remaining tokens into a string using spaces and returns the result. 

Thus, the text_cleaning function performs pre-processing of the text, which can be used for 

subsequent analysis of text data. 

The Keras package used in the project uses the Tokenizer class to tokenize text. It allows you 

to convert text into a sequence of numbers, where each word in the text has a unique index. 

Df = pd.read_csv(‘vendors/ai/data.csv’) 

df[‘comment’] = df[‘comment’].apply(str) 

train_features = df[‘comment’] 
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train_labels = df[‘toxic’] 

vocab_size = 20000 

max_seq_len = 20 

vector_size = 300 

tokenizer = Tokenizer(oov_token=”<OOV>”, num_words=vocab_size) 

tokenizer.fit_on_texts(train_features) 

sequences_train = tokenizer.texts_to_sequences(train_features) 

padded_train = pad_sequences(sequences_train, padding=’post’, maxlen=max_seq_len) 

The first lines of code load the data from the file “data.csv” into a DataFrame object, 

previously normalized, then a new “comment” column is created, in which each value is 

converted to a string to avoid errors. 

Further, the data is divided into features and labels. The features are the “comment” column, 

which contains text comments, and the tags are the “toxic” column, which contains information 

about whether the comment is toxic or not. 

About variables: 

1. vocab_size (dictionary size) – the number of unique words in our corpus of texts that will 

be used to build word vectors; 

2. max_seq_len (maximum sequence length) – the maximum length of the sequence of 

words that will be used to train the model; 

3. vector_size (vector dimension) – the number of vector dimensions that each word in our 

dictionary will represent. 

For text tokenization, an object of the Tokenizer class is used. The tokenizer parameters are 

defined in the class constructor: oov_token is a token that will be used for all words that were 

not taken into account during training; num_words is the maximum number of words that will 

be taken into account when training. In this case, the value is set to 20000. 

Then, the fit_on_texts() method trains the tokenizer on the text data passed as an argument. 

Next, the texts_to_sequences() method converts text comments into sequences of numbers 

based on the trained tokenizer. Finally, the pad_sequences() method adjusts the length of each 

sequence to max_seq_len, padding it with zeros or truncating it if the length is greater than 

max_seq_len. 

It is worth explaining in detail why to further limit the size of a previously optimized 

dictionary. The dictionary size limit when training a neural network has several reasons: 

• First, large vocabularies result in a large number of parameters that must be trained. This 

requires more computational resources and time, which complicates the learning process and 

can lead to overfitting of the model. 

• Secondly, there are often words in the text that appear very rarely or even only once. Their 

use in the model is inefficient, since there will not be enough examples for them to well evaluate 

their contribution to the prediction. The dictionary constraint allows you to remove such words 

from the model and improve its performance. 

• Finally, limiting the dictionary size helps to reduce noise in the data[10]. Using a dictionary 

that is too large can cause the model to include random noise words that have nothing to do with 

the predicted class. 

Thus, limiting the size of the dictionary is an important strategy when training neural 

networks to work with text data [17]. 

The process of creating a neural network model in Keras and selecting layers are very 

important steps in developing and training neural networks. Choosing the right architecture and 

hyperparameters for a neural network can significantly affect the quality of its work. With the 

wrong choice of layers and parameters, the network may not learn or give poor results [18]. 
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Keras provides many layers and options that can be used to customize the model to suit the 

problem you are trying to solve. For example, using convolutional layers can be efficient for 

image processing, while using recurrent layers can be useful for processing sequential data such 

as texts and time series. 

The right choice of layers and parameters can also increase the efficiency of neural network 

training[18]. For example, using the ReLU activation function instead of the sigmoid can speed 

up learning by calculating gradients quickly. Also, using Dropout and BatchNormalization 

layers can prevent overfitting and improve the quality of training. 

In general, building an efficient neural network model is a process that requires careful data 

analysis and experimentation with different architectures and parameters. 

After long attempts to get the best result of the neural network, the implementation of the 

following type of model was chosen: 

def get_model(): 

    model = Sequential() 

    model.add(Embedding(input_dim=vocab_size, output_dim=vector_size, 

input_length=max_seq_len)) 

    model.add(Dropout(0.6)) 

    model.add(LSTM(max_seq_len, return_sequences=True)) 

    model.add(LSTM(6)) 

    model.add(Dense(1, activation=’sigmoid’)) 

    return model 
 

callbacks = [keras.callbacks.EarlyStopping(monitor=”val_loss”, patience=2, verbose=1, 

mode=”min”, restore_best_weights=True 

    )] 

model = get_model() 
 

First of all, the get_model() function is defined, which returns a serial model of the neural 

network. 

The first layer of the model is the Embedding layer, which converts integers (word indices) 

into fixed-length dense vectors. The following parameters are set for this layer: 

• input_dim=vocab_size is the size of the dictionary that specifies the input value for the 

layer; 

• output_dim=vector_size — output space dimension, ie. The number of dimensions of the 

vector that is expected at the output; 

• input_length=max_seq_len is the length of each sequence that is passed to the layer. 

Next, a Dropout layer with a coefficient of 0.6 is added to the model, which prevents the 

model from retraining. 

Then two LSTM layers are added and used to process the sequences. The first layer of the 

LSTM returns a sequence, while the second layer only returns the last output element, allowing 

the output to be dimensionally reduced. 

Finally, a Dense layer is added with one output neuron and a sigmoid activation function, 

which allows texts to be classified into two classes. 

The next line defines the callbacks array, which contains the callbacks that are executed 

during model training. In this case, EarlyStopping is used, which stops training when the 

val_loss metric does not improve for two epochs (used when compiling the model). 

A model is created (see Fig. 1) by calling the get_model() function. 

The structure of the developed model: 

1. Sequential is the container used to create the model. This container contains one or more 
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layers that are added sequentially one after the other. 

2. Embedding is a layer used to create vector representations of words. Each word in the 

input dataset is converted to a vector of the given dimension. These vectors are used to pass 

word information to the next layer of the model. 

 
 

Figure 1. The developed neural network model 

 

3. Dropout is the layer used to regularize the model. It helps prevent overfitting by removing 

randomly selected input data elements with a given probability. This allows the model to learn 

more general features. 

4. LSTM is a recurrent layer used to parse sequential data such as text. It processes the 

sequence of inputs element by element and stores information about the previous elements in its 

memory. 

5. Dense is a fully connected layer that takes input from previous layers and produces model 

predictions. In the code above, the layer has a single output and uses a sigmoid activation 

function to generate a binary output – the model’s prediction about the offensiveness of the 

comment. A more complex classification is not required in this case. 

The finished model needs to be trained: 

 

model.compile(optimizer=’adam’, loss=’binary_crossentropy’, metrics=[‘accuracy’]) 

tf.config.run_functions_eagerly(True) 

history = model.fit(padded_train, train_labels, validation_split=0.33, callbacks=callbacks, 

epochs=10) 

 

The model.compile method is used to customize the model training process. Three important 

parameters are defined here: 

1. optimizer is an optimizer that determines the algorithm for updating model weights during 

training. After much testing, the best result was obtained using the adam optimizer, which is a 

stochastic gradient descent optimization technique with variable size stochastic gradient steps. 

2. loss is a loss function that measures how well the model performs on the training data. In 

this case, based on the requirements of the model, the binary_crossentropy loss function is used, 

which is usually used for binary classification. 

3. metrics is a list of metrics used to evaluate the performance of the model. In the variant 

above, the accuracy metric was used, which measures the proportion of correct answers. 

Next, calling tf.config.run_functions_eagerly puts TensorFlow into eager mode, which 
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allows TensorFlow operations to execute immediately, as opposed to TensorFlow 1.x’s compute 

graph and lazy execution. 

Finally, model.fit starts the training process. Here, padded_train and train_labels represent 

the training dataset, and validation_split=0.33 means that 33% of the data will be used as the 

validation set to evaluate the performance of the model on data that it did not see during 

training. 

Callbacks=callbacks is used to define additional callbacks to be executed during the learning 

process, such as early stopping. The array itself was mentioned earlier in the model design 

phase. 

And epochs=10 specifies the number of epochs (full training cycles on the training dataset) 

that the model will train. 

Here it is worth dwelling on the loss functions, the optimizer, and the choice of the number 

of training epochs in order to analyze in more detail why these parameter values were used. 

The binary crossentropy loss function is used in binary classification problems (when there 

are only two classes), and it measures the difference between the real and predicted values 

between two classes. It is used to determine how well a neural network models class 

probabilities and is the most common loss function for binary classification problems. 

The adam optimizer is a stochastic optimization technique that is used to tune model 

parameters based on loss function gradients[19]. Adam is an adaptive optimization method that 

adjusts the learning rate for each parameter individually, which allows the neural network to 

converge faster to optimal parameter values. 

The number of epochs determines how many times the model will run through the entire 

training dataset. Each epoch consists of one or more training steps, during which the model 

receives training data as input, calculates the predictions and compares them with the true 

values, and then optimizes the parameters based on the loss function. 

The number of epochs is chosen based on how quickly the model converges to optimal 

values, and what accuracy is achieved on the validation data set. 

When choosing the number of epochs, it should be taken into account that too few epochs 

can lead to underfitting of the model, and too many epochs can lead to overfitting. 

After running all the previously written code, the process of training the model starts, in this 

case the result was as follows: 

 # Output: 

# Epoch 1/10 

# 296/296 [==============================] – 133s 449ms/step  

# - loss: 0.4777 – accuracy: 0.7656  

# - val_loss: 0.2748 – val_accuracy: 0.9016 

# Epoch 2/10 

# 296/296 [==============================] – 150s 507ms/step  

# - loss: 0.2191 – accuracy: 0.9207  

# - val_loss: 0.2618 – val_accuracy: 0.8928 

# Epoch 3/10 

# 296/296 [==============================] – 157s 530ms/step  

# - loss: 0.1150 – accuracy: 0.9623  

# - val_loss: 0.2914 – val_accuracy: 0.8939 

# Epoch 4/10 

# 296/296 [==============================] – ETA: 0s  

# - loss: 0.0641 – accuracy: 0.9808 

# Restoring model weights from the end of the best epoch: 2. 
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# 296/296 [==============================] – 132s 446ms/step  

# - loss: 0.0641 – accuracy: 0.9808  

# - val_loss: 0.3445 – val_accuracy: 0.8857 

# Epoch 4: early stopping 

As can be seen, in the first training epoch, the model achieved a loss of 0.4777 and an 

accuracy of 0.7656 on the training data, and a loss of 0.2748 and an accuracy of 0.9016 on the 

validation data. 

In the second epoch, the model achieved a significant improvement in accuracy, reaching 

0.9207 on the training data and 0.9020 on the validation data, with a loss of 0.2605. 

In the third epoch, the model continued to improve, reaching a loss of 0.1150 and an 

accuracy of 0.9623 on the training data, but on the validation data it slightly worsened to a loss 

of 0.2914 and an accuracy of 0.8939. 

At the end of the fourth epoch, the model retained the weights from the best epoch (epoch 2) 

because that epoch performed best on the validation data. And as a result, the model achieved a 

loss of 0.0641 and an accuracy of 0.9808 (98%) on the training data in this epoch. The training 

process ended ahead of schedule. 

In conclusion about the training process, it can be noted that the model based on the LSTM 

architecture was trained on the classification dataset and showed good results, improving its 

accuracy at each training epoch. 

 

 
 

Figure 2. Bullying detection information technology 

 

As an implementation of the trained neural network, an application with a graphical interface 

was written. The UI was developed using the Vue.js framework. To call the Python code, the eel 

library was included. Information technology looks like this (see Fig. 2). 
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Figure 2 shows the complete architecture of the entire application, based on which it is clear 

that all components are isolated and each works independently of other functionality, this 

approach avoids potential errors and simplifies the transfer of the desired component to another 

application, if there is such a need. The center of all software is a controller that connects the 

user interface, the logic of interaction between libraries for parsing data from Telegram, and the 

neural network module. 

 

 
 

Figure 3. Application interface and assessing the toxicity of real user comments 

 

The application interface (see Fig. 3) contains several mods, when selected, you can collect 

all comments under one post, under a certain number of posts of a specific group or an entire list 

of groups. Then statistics are collected based on the assessment of the toxicity of comments 

from the neural network. A corresponding diagram with calculations is displayed, which clearly 

shows the level of toxicity in the comments. 

You can also expand the list of comments that were received by parsing posts.  This list 

consists of the username and comment. Cleaned comments are submitted for evaluation of the 

neural network, but their original versions are displayed for final viewing. The interface 

highlights toxic comments in orange, while neutral ones are displayed in white. Thus, in a 

matter of seconds it is possible to collect a large amount of data and assess the level of toxicity 

of the audience of various groups. You can find the full source code for the project here: 

https://github.com/afteralls/ai-cyberbullying-detector. 

Results and discussion. As a result of the work, a tool was created that will automatically 

recognize cases of insults and help in the fight against cyberbullying. 

During the project the following tasks were completed: the theory of neural networks has 

been studied, a neural network model was created and compiled, a neural network model has 

been trained that can detect cases of online abuse, an application was designed to interact with 

the trained model. 

Conclusion.  

At the end of the article, the relevance of the problem associated with the growth of 

cyberbullying in the modern information society is considered, and an innovative solution based 

on artificial intelligence is proposed. 

As a result of this work, a tool has been created that will automatically recognize instances of 

abuse and help in combating cyberbullying with a trained Keras model using the LSTM 

architecture. 

https://github.com/afteralls/ai-cyberbullying-detector
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Through trial and experimentation with model building, it was found that recurrent neural 

networks such as LSTM perform well when processing sequential data such as texts. Using this 

architecture allowed the model to identify text message characteristics indicative of 

cyberbullying. 

Further research may be aimed at expanding the data set and improving the architecture of 

the model to improve its accuracy and efficiency in detecting cyberbullying. However, the 

results of this study demonstrate that recurrent neural networks can be an effective tool in the 

fight against online cyberbullying. 
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