Ne 4, 2023 343 «IKTY XABAPIIBICBI»

TEXHUUYECKME HAYKH @
Y TEXHOJIOTHH

NHOOPMALIMOHHBIE CUCTEMBI
INFORMATION SYSTEMS
AKMAPATTBIK XYWNEJIEP

DOI 10.51885/1561-4212_2023_4_343
IRSTI 20.23.17

D.V. Sukharnikov?, A.T. Bekishev?, K.Y. Nursakitov?, S.K. Kumargazhanova?,

A.M. Urkumbaeval, L.K. Bobrov?

1D.Serikbayev East Kazakhstan Technical University, Ust-Kamenogorsk, Kazakhstan

E-mail: afterallspace@gmail.com

E-mail: a.nomad.b@mail.ru

E-mail: Nursakitov@bk.ru*

E-mail: skumargazhanova@gmail.com

E-mail: urkumbaeva@mail.ru

2Novosibirsk state university of economics and management, Novosibirsk, Russian Federation
E-mail: L.k.bobrov@edu.nsuem.ru

APPLICATION OF NEURAL NETWORKS FOR
CYBERBULLYING DETECTION

KUBEPBYJINTUHITI AHbIKTAUTbIH HENPOHAbIK XXENINEPAI KONOAHY

NMPUMEHEHUE HEMPOHHbIX CETEU
AnsA ONPEAENEHUA KUBEPBYJITUHTA

Abstract. Cyberbullying is a global problem affecting many people, especially children and teenagers.
This phenomenon is common in many countries, causing psychological, emotional and social damage to
its victims. Technologies such as social media and mobile apps exacerbate the problem by providing a
platform for anonymous attacks. To resist cyberbullying, many organizations and governments are taking
action, from zero-tolerance policies to legislative initiatives. Awareness raising and education also play a
key role. At the forefront of the fight against cyberbullying is the development of neural networks that can
automatically detect and block toxic content online. This article describes the main stages of training a
neural network and creating an information technology based on it to protect people from such a
phenomenon as cyberbullying.

Key words: natural language processing, sentiment analysis, machine learning, cyberbullying, neural
network, TensorFlow.

AHOamna. KubepbynnuHz kenmezeH adamOapra, ocipece 6ananap MeH xacecripimoepee acep
ememiH xahaHOblK Macerne. byn Kybbinbic kenmezeH endepde Xui ke3deceldi, 3apdan uwekkeHOepae
ricuxornoeausinblK, 3MOUUOHarnObIK XoHe arneymemmik 3usH kKenmipedi. Oneymemmik medua XoHe
mobunbdi KocbiMwanap Cuskmel mexHosnoausiiap aHoHumOi wabybindapra apHanfFaH raamgopmMaHbl
KaMmmamachbi3 emy apKbliibl MoceneHi yulbikmbipadbl. KubepbynnuHaneH Kypecy ywiH kerimezeH ylibiMoap
MeH ykimemmep Hendik me3imOinik cascambiHaH 6acman 3aHHamarsnblk bacmamanapra OeliH apekem
emyde. Aknapammbl apmmbipy MeH 6inivm 6epy 0e 6acmbi pen amkapadbl. KubepbynnuHaneH KypecmiH
anodbiHFbl KamapblHOa yrbl MasMyHObl Xenide asmomammbl myple aHbikmar, 6r1okmal anambiH
HelipoHObIK xeninepdi dambimy. byn makanada HeUpOHObIK XeniHi OKbimMyOblH XoHe OHbIH HezidiHOe
KkubepbyrnnuHe cussikmbl KyOblnbICIEH Kypecy YWIiH aknapammblK mMexHOno2ausiHbl KypyObiH Heeiai
Ke3eHOepi cunammarsiraH.

Tylin ce3dep: maburu mindi eHOey, ceHmumeHm masnday, MawuHasnblK OKbimy, maburu mindi
6Hdey,, kubepbynuHe, HelipoHObIK xeri, TensorFlow.
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AnHomauyusi. KubepbynnuHe — anobarnbHas rnpobrema, 3ampazausarowasi MHo2ux, ocobeHHo demet u
nodpocmkos. 3Omo  sAefieHUE  pPacrpocmpaHeHo 80 MHO2UX cmpaHax, [PUYUHSS Xepmeam
ricuxornoau4yeckuli, 3MOYUOHasbHbIl U coyuarnbHbll yuepb. TexHomoauu, makue Kak coyuasnbHblie cemu u
MObuUrbHbIE MPpUMoXeHuUs, ycyaybnsiom npobnemy, npedocmaesnss nnamgopmy Orsi aHOHUMHbIX amak.
Umobbi 6opombcs ¢ kubepbynuHeoM, MHO2Ue op2aHu3ayuu u rpasumernbscmea npuHUMarom Mepbl: 0m
nonumuk Hyneeol meprnumocmu 00 3aKkoHodamerbHbIX uHuyuamus. [losbiweHue oceedomieHHocmu u
obpasoeaHue makxe ueparom Kir4yesyro pornb. Ha nepedHem kpae 60psbbi ¢ kubepbynnuHaomM cmoum
paspabomka HeUpPOHHbIX cemel, Komopblie MO2ym asmomMamu4ecku ornpedensmb u 6rokuposamsb
MOKCUYHBILU KOHMeHm 8 cemu. B daHHOU cmambe onucaHbi OCHOBHble amaribi 06y4YeHuUs1 HelpOHHOU
cemu u cos0aHusi UHGhopMayUOHHOU mexHonoauu Ha eé€ ocHoge rno bopbbe ¢ makuMm si8fleHUeM Kak
KubepbynnuHe.

Knroueenie cnosa: o6pabomka ecmecmeeHHO20 53bika, CeHMUMEeHM-aHanus, MawuHHoe oby4yeHue,
KubepbyrnnuHe, HelipoHHas cemb, TensorFlow.

Introduction. The increase in Internet communication has led to the emergence and growth
of one of the most acute social problems — cyberbullying. Cyberbullying can cause irreparable
harm to the psychological and emotional health of people, cause depression and suicide[1]. A
2022 Pew Research study found that nearly half of all teens (49%) had experienced some form
of cyberbullying (https://www.comparitech.com/internet-providers/cyberbullying-statistics/). At
the same time, with the development of digital technologies and the spread of social networks,
the number of cases of cyberbullying is becoming more and more. One of the effective ways to
detect cyberbullying is to use artificial intelligence technologies[2]. In this paper, a neural
network model has been developed, tools, patterns and architectural solutions for network
training have been proposed; information technology for detecting cases of bullying in social
networks.

Literature Review. This section examines the most current research related to the use of
neural networks to determine cyberbullying.

Acrticle[3] is devoted to the development of a program for determining the sentiment of a
text. The article substantiates the relevance of protecting society from cyberbullying. Methods
of counteracting cyberbullying are analyzed. An indicator of the negativity of site information
has been introduced. The work of the site blocker is discussed in detail. The use of sentiment
analysis, which is based on the use of neural networks, is justified. For sentiment analysis of
information flows, a program was developed in the high-level Python programming language
with the introduction of ready-made trained neural networks into it. A dictionary based on
themes is used.

The main contribution of the authors of the work [4] to the study of the topic is the use of a
method for identifying trolls in social networks, which is based on an analysis of the emotional
state of network users and behavioral activity. To identify trolls, users were grouped into
groups; this grouping is carried out by identifying a similar method of communication. The
distribution of users is carried out automatically thanks to the use of a special type of neural
networks, namely self-organizing Kohonen maps. The group number is also determined
automatically. To determine the characteristics of users on the basis of which the distribution
into groups is made, the number of comments, the average length of a comment and an indicator
responsible for the emotional state of the user are used.

The article [5] discusses the features of the procedure for automatically detecting
cyberbullying in English-language tweets based on the Logistic Regression machine learning
model. It is noted that this model allows you to obtain an accurate result of identifying the
means of implementing electronic bullying, as well as automatically replenish the database with
new cyberbullying markers, including units derived from them.

This work [6] considered solving the problem of multi-class classification of toxic messages
based on gradient boosting using the CatBoost library and neural networks using Keras. In
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particular, convolutional neural networks, neural networks with LSTM and GRU architecture
were considered.

The authors[7] used a corpus linguistic-statistical research tool based on the use of relational-
situational analysis, psycholinguistic indicators and dictionaries covering the vocabulary of
emotional and rational assessment; to obtain data on the level of aggressiveness of the
subjects, the Bass-Perry questionnaire was used; When processing the data, binary
classification algorithms, support vector machine (SVM) and random forest (Random Forest),
were used.

Thus, these works show the relevance of using machine learning methods to identify
cyberbullying on social networks. However, further research is needed to develop more accurate
and effective models for detecting cyberbullying on social media platforms.

Materials and methods of research. Training a neural network for text processing includes
several steps:

1. data collection. The first step in training a neural network is to collect enough data. In the
case of working with text, this may include collecting text documents, testimonials, articles, or
any other type of text content appropriate to the task;

2. text preprocessing. After collecting the data, it is necessary to pre-process the text. This
includes removing unwanted characters, numbers, punctuation, converting text to lowercase,
and other operations to clean up data and simplify subsequent analysis;

3. tokenization. The next step is to split the text into individual tokens or words.
Tokenization helps convert textual data into a numeric form, allowing the neural network to
work with it. Each word or character is assigned a unique identifier;

4. creating a model. After pre-processing the data, it is necessary to create a neural network
model. The model defines the architecture of the network, including layers, links, and
parameters. You can choose different architectures such as Recurrent Neural Networks (RNN),
Convolutional Neural Networks (CNN) or Transformers depending on your task;

5. model training. After creating the model, you need to train it on the prepared data. This
process includes feeding training examples to the model, calculating the error (loss), and
optimizing the model parameters using the gradient descent algorithm. Training can include
multiple epochs, where each epoch is a complete pass over all training data;

6. evaluation and tuning of the model. After completing the training of the model, it is
required to evaluate its performance. This may include accuracy, recall, F1 score, or other
metrics, depending on your task. If necessary, you can tweak the model settings or change its
architecture to improve performance.

Each of these stages requires careful work and experimentation in order to achieve good
results and ensure the efficient functioning of the neural network.

The development was carried out in Python, Keras and TensorFlow were used to train the
neural network — these are two packages from Google that are widely used in the field of deep
learning of neural networks [8].

Preparing a dataset for training recurrent networks is one of the most important steps in
creating a model. The steps that are usually included in the process of preparing a dataset for
training recurrent networks include the following:

1. data collection. It is important to have a large and diverse dataset for training recurrent
networks. For this, various data sources can be used, such as social networks, news articles,
forum posts, etc.;

2. data cleaning. Data obtained from various sources may contain many errors, typos and
other inaccuracies that may adversely affect the quality of the model. Therefore, it is necessary
to clean up the data, which includes removing unnecessary characters, correcting typos, etc.;
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3. Transform data into a number format: To train recurrent networks, the data must be
converted into a number format that can be used as input to the model. For example, for text
data, character-to-number encoding can be used using methods such as one-hot encoding or
word embedding;

4. splitting the data into training and test sets: after preparing the data and converting it into a
numerical format, it is necessary to divide the data into training and test sets. The training set is
used to train the model and the test set is used to check the quality of the model;

5. Creation of sequences: Recurrent networks work with sequential data, so the data must be
converted into sequences. For example, for text data, you can break the text into sequences of a
fixed length.

In general, preparing a dataset for training recurrent networks is a complex process that
requires a lot of time and patience. However, the right approach will help to better train the final
model and improve its performance in real use [11].

Morphological text analysis is an important step before training a neural network or other
natural language processing model. It includes the analysis and analysis of words in the text to
determine their lexical and grammatical characteristics[12].

The steps that can be performed in the process of morphological text analysis include the
following concepts:

1. tokenization. The text is broken into individual tokens, which can be words or characters.
Tokens serve as the basic units of analysis[9].

2. lemmatization. Reduction of words to their lemmas (basic form). Lemmatization allows
you to reduce the various grammatical forms of a word to a single basic form[13]. For example,
the words “run”, “ran”, “running” will be reduced to the lemma “run”;

3. stemming. The process of stripping affixes from a word to obtain its stem (stem). The
result of stemming may be less precise than lemmatization, but it allows words to be reduced to
their base form for further analysis[14]. For example, the words “run”, “ran”, “running” can be
truncated to the common stem “run’;

4. extraction of syntactic relations. Analysis of connections and relationships between words
in a sentence, such as subject and predicate, dependent and independent constructions[10]. This
allows for a deeper understanding of sentence structure and the context in which each word is
used.

Morphological text analysis helps to make the text understandable for neural network
training, as it provides information about the structure and characteristics of words[16].

Text tokenization is the process of converting text data into sequences of numbers (tokens)
that can be used to train neural networks[9]. When text is used as input to a neural network, it
must be converted to a numeric format. This can be done by breaking the text into individual
words (tokens) and then assigning each word a unique number.

A special dataset was used to train the neural network, which contains 14135 classified
records in russian. The data structure is as follows: comment — user comment, toxic — comment
toxicity score in the form of 0 and 1. You can find the full collection here: https://mww.
kaggle.com/datasets/blackmoon/russian-language-toxic-comments?resource=download.

The collected data collection should be brought to a form that the neural network learning
algorithm understands, therefore, first, it is necessary to bring all the words into normal form,
and the necessary tools already exist for this. The pymorphy2, re and nltk packages were used
for this.

The following functions are used to convert sentences into the correct format:

import pymorphy2

import re
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from nltk.corpus import stopwords

TOKEN_RE = re.compile(r’[a-s€]+’)
347roblem_stopwords = stopwords.words(“347roblem”)
morph = pymorphy2.MorphAnalyzer(lang="ru’)
def tokenize_text(txt, min_lenght_token=2):
txt = txt.lower()
all_tokens = TOKEN_RE.findall(txt)
return [token for token in all_tokens if len(token) >= min_lenght_token]

def remove_stopwords(tokens):
return list(filter(lambda token: token not in 347roblem_stopwords, tokens))

def lemmatizing(tokens):

return [morph.parse(token)[0].normal_form for token in tokens]
def text_cleaning(txt):

tokens = tokenize_text(txt)

tokens = lemmatizing(tokens)

tokens = remove_stopwords(tokens)

return * © join(tokens)

This code implements several functions for preprocessing text in Russian:

1. The necessary libraries are imported: ‘pymorphy2’ for lemmatization, ‘re’ for working
with regular expressions and ‘stopwords’ from the NLTK library for removing stop words.

2. The regular expression TOKEN_RE is defined, which only searches for Russian words
and ignores all other characters in the text.

3. A list of Russian stop words is created and the morphological analyzer pymorphy2 is
loaded.

4. The tokenize text function receives the text txt and the optional argument
min_lenght_token (the minimum length of the token) and performs the following steps:

» Converts all text to lower case.

» Searches for all tokens (words) that match the regular expression TOKEN RE.

* Returns a list of tokens whose length is greater than or equal to min_lenght token.

5. The remove_stopwords function receives a list of tokens and returns a new list without
stop words from the list of Russian stop words.

6. The lemmatizing function takes a list of tokens and returns a list of lemmas (normal forms
of words) using pymorphy2.

7. The text_cleaning function receives the text txt and performs the following steps:

» Tokenizes text using the tokenize text function.

» Lemmatizes tokens using the lemmatizing function.

» Removes stop words from tokens using the remove_stopwords function.

+ Concatenates the remaining tokens into a string using spaces and returns the result.

Thus, the text_cleaning function performs pre-processing of the text, which can be used for
subsequent analysis of text data.

The Keras package used in the project uses the Tokenizer class to tokenize text. It allows you
to convert text into a sequence of numbers, where each word in the text has a unique index.

Df = pd.read csv(‘vendors/ai/data.csv’)

df] ‘comment’] = df[ ‘comment’].apply(str)

train_features = df] ‘comment’]
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train_labels = dff ‘toxic’]

vocab_size = 20000

max_seq_len = 20

vector_size = 300

tokenizer = Tokenizer(oov_token="<OOV>", num_words=vocab_size)

tokenizer fit_on_texts(train_features)

sequences_train = tokenizer.texts_to_sequences(train_features)

padded train = pad_sequences(sequences_train, padding="post’, maxlen=max_seq_len)

The first lines of code load the data from the file “data.csv” into a DataFrame object,
previously normalized, then a new “comment” column is created, in which each value is
converted to a string to avoid errors.

Further, the data is divided into features and labels. The features are the “comment” column,
which contains text comments, and the tags are the “toxic” column, which contains information
about whether the comment is toxic or not.

About variables:

1. vocab_size (dictionary size) — the number of unique words in our corpus of texts that will
be used to build word vectors;

2. max_seq_len (maximum sequence length) — the maximum length of the sequence of
words that will be used to train the model;

3. vector_size (vector dimension) — the number of vector dimensions that each word in our
dictionary will represent.

For text tokenization, an object of the Tokenizer class is used. The tokenizer parameters are
defined in the class constructor: oov_token is a token that will be used for all words that were
not taken into account during training; num_words is the maximum number of words that will
be taken into account when training. In this case, the value is set to 20000.

Then, the fit_on_texts() method trains the tokenizer on the text data passed as an argument.
Next, the texts_to_sequences() method converts text comments into sequences of numbers
based on the trained tokenizer. Finally, the pad_sequences() method adjusts the length of each
sequence to max_seq_len, padding it with zeros or truncating it if the length is greater than
max_seq_len.

It is worth explaining in detail why to further limit the size of a previously optimized
dictionary. The dictionary size limit when training a neural network has several reasons:

» First, large vocabularies result in a large number of parameters that must be trained. This
requires more computational resources and time, which complicates the learning process and
can lead to overfitting of the model.

» Secondly, there are often words in the text that appear very rarely or even only once. Their
use in the model is inefficient, since there will not be enough examples for them to well evaluate
their contribution to the prediction. The dictionary constraint allows you to remove such words
from the model and improve its performance.

* Finally, limiting the dictionary size helps to reduce noise in the data[10]. Using a dictionary
that is too large can cause the model to include random noise words that have nothing to do with
the predicted class.

Thus, limiting the size of the dictionary is an important strategy when training neural
networks to work with text data [17].

The process of creating a neural network model in Keras and selecting layers are very
important steps in developing and training neural networks. Choosing the right architecture and
hyperparameters for a neural network can significantly affect the quality of its work. With the
wrong choice of layers and parameters, the network may not learn or give poor results [18].
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Keras provides many layers and options that can be used to customize the model to suit the
problem you are trying to solve. For example, using convolutional layers can be efficient for
image processing, while using recurrent layers can be useful for processing sequential data such
as texts and time series.

The right choice of layers and parameters can also increase the efficiency of neural network
training[18]. For example, using the ReL.U activation function instead of the sigmoid can speed
up learning by calculating gradients quickly. Also, using Dropout and BatchNormalization
layers can prevent overfitting and improve the quality of training.

In general, building an efficient neural network model is a process that requires careful data
analysis and experimentation with different architectures and parameters.

After long attempts to get the best result of the neural network, the implementation of the
following type of model was chosen:

def get_model():

model = Sequential()

model.add(Embedding(input_dim=vocab_size, output_dim=vector_size,
input_length=max_seq_len))

model.add(Dropout(0.6))

model.add(LSTM(max_seq_len, return_sequences=True))

model.add(LSTM(6))

model.add(Dense(1, activation="sigmoid’))

return model

callbacks = [keras.callbacks.EarlyStopping(monitor="val _loss”, patience=2, verbose=1,
mode="min”, restore_best weights=True

)]

model = get_model()

First of all, the get_model() function is defined, which returns a serial model of the neural
network.

The first layer of the model is the Embedding layer, which converts integers (word indices)
into fixed-length dense vectors. The following parameters are set for this layer:

* input_dim=vocab_size is the size of the dictionary that specifies the input value for the
layer;

* output_dim=vector size — output space dimension, ie. The number of dimensions of the
vector that is expected at the output;

* input_length=max_seq len is the length of each sequence that is passed to the layer.

Next, a Dropout layer with a coefficient of 0.6 is added to the model, which prevents the
model from retraining.

Then two LSTM layers are added and used to process the sequences. The first layer of the
LSTM returns a sequence, while the second layer only returns the last output element, allowing
the output to be dimensionally reduced.

Finally, a Dense layer is added with one output neuron and a sigmoid activation function,
which allows texts to be classified into two classes.

The next line defines the callbacks array, which contains the callbacks that are executed
during model training. In this case, EarlyStopping is used, which stops training when the
val_loss metric does not improve for two epochs (used when compiling the model).

A model is created (see Fig. 1) by calling the get_model() function.

The structure of the developed model:

1. Sequential is the container used to create the model. This container contains one or more
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layers that are added sequentially one after the other.

2. Embedding is a layer used to create vector representations of words. Each word in the
input dataset is converted to a vector of the given dimension. These vectors are used to pass
word information to the next layer of the model.

Output Layer

Full-Connect
Layer

Dropout
LSTM Layer

Input Layer

Figure 1. The developed neural network model

3. Dropout is the layer used to regularize the model. It helps prevent overfitting by removing
randomly selected input data elements with a given probability. This allows the model to learn
more general features.

4. LSTM is a recurrent layer used to parse sequential data such as text. It processes the
sequence of inputs element by element and stores information about the previous elements in its
memory.

5. Dense is a fully connected layer that takes input from previous layers and produces model
predictions. In the code above, the layer has a single output and uses a sigmoid activation
function to generate a binary output — the model’s prediction about the offensiveness of the
comment. A more complex classification is not required in this case.

The finished model needs to be trained:

model.compile(optimizer="adam’, loss="binary_crossentropy’, metrics=[‘accuracy’])

tf.config.run_functions_eagerly(True)

history = model.fit(padded_train, train_labels, validation_split=0.33, callbacks=callbacks,
epochs=10)

The model.compile method is used to customize the model training process. Three important
parameters are defined here:

1. optimizer is an optimizer that determines the algorithm for updating model weights during
training. After much testing, the best result was obtained using the adam optimizer, which is a
stochastic gradient descent optimization technique with variable size stochastic gradient steps.

2. loss is a loss function that measures how well the model performs on the training data. In
this case, based on the requirements of the model, the binary_crossentropy loss function is used,
which is usually used for binary classification.

3. metrics is a list of metrics used to evaluate the performance of the model. In the variant
above, the accuracy metric was used, which measures the proportion of correct answers.

Next, calling tf.config.run_functions_eagerly puts TensorFlow into eager mode, which
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allows TensorFlow operations to execute immediately, as opposed to TensorFlow 1.x’s compute
graph and lazy execution.

Finally, model.fit starts the training process. Here, padded_train and train_labels represent
the training dataset, and validation_split=0.33 means that 33% of the data will be used as the
validation set to evaluate the performance of the model on data that it did not see during
training.

Callbacks=callbacks is used to define additional callbacks to be executed during the learning
process, such as early stopping. The array itself was mentioned earlier in the model design
phase.

And epochs=10 specifies the number of epochs (full training cycles on the training dataset)
that the model will train.

Here it is worth dwelling on the loss functions, the optimizer, and the choice of the number
of training epochs in order to analyze in more detail why these parameter values were used.

The binary crossentropy loss function is used in binary classification problems (when there
are only two classes), and it measures the difference between the real and predicted values
between two classes. It is used to determine how well a neural network models class
probabilities and is the most common loss function for binary classification problems.

The adam optimizer is a stochastic optimization technique that is used to tune model
parameters based on loss function gradients[19]. Adam is an adaptive optimization method that
adjusts the learning rate for each parameter individually, which allows the neural network to
converge faster to optimal parameter values.

The number of epochs determines how many times the model will run through the entire
training dataset. Each epoch consists of one or more training steps, during which the model
receives training data as input, calculates the predictions and compares them with the true
values, and then optimizes the parameters based on the loss function.

The number of epochs is chosen based on how quickly the model converges to optimal
values, and what accuracy is achieved on the validation data set.

When choosing the number of epochs, it should be taken into account that too few epochs
can lead to underfitting of the model, and too many epochs can lead to overfitting.

After running all the previously written code, the process of training the model starts, in this
case the result was as follows:

# Output:

# Epoch 1/10

# 296/296 [=============== = ===] — 133s 449ms/step

# - loss: 0.4777 — accuracy: 0.7656

# - val_loss: 0.2748 — val_accuracy: 0.9016

# Epoch 2/10

# 296/296 [=============== = ===] — 150s 507ms/step

# - loss: 0.2191 — accuracy: 0.9207

# - val_loss: 0.2618 — val_accuracy: 0.8928

# Epoch 3/10

# 296/296 [=============== = ===] — 157s 530ms/step

# - loss: 0.1150 — accuracy: 0.9623

# - val_loss: 0.2914 — val_accuracy: 0.8939

# Epoch 4/10

# 296/296 [::::::::::::::: = :::] —ETA: Os

# - loss: 0.0641 — accuracy: 0.9808

# Restoring model weights from the end of the best epoch: 2.
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# 296/296 [m============== = ===] — 132s 446ms/step

# - loss: 0.0641 — accuracy: 0.9808

# - val_loss: 0.3445 — val_accuracy: 0.8857

# Epoch 4: early stopping

As can be seen, in the first training epoch, the model achieved a loss of 0.4777 and an
accuracy of 0.7656 on the training data, and a loss of 0.2748 and an accuracy of 0.9016 on the
validation data.

In the second epoch, the model achieved a significant improvement in accuracy, reaching
0.9207 on the training data and 0.9020 on the validation data, with a loss of 0.2605.

In the third epoch, the model continued to improve, reaching a loss of 0.1150 and an
accuracy of 0.9623 on the training data, but on the validation data it slightly worsened to a loss
of 0.2914 and an accuracy of 0.8939.

At the end of the fourth epoch, the model retained the weights from the best epoch (epoch 2)
because that epoch performed best on the validation data. And as a result, the model achieved a
loss of 0.0641 and an accuracy of 0.9808 (98%) on the training data in this epoch. The training
process ended ahead of schedule.

In conclusion about the training process, it can be noted that the model based on the LSTM
architecture was trained on the classification dataset and showed good results, improving its
accuracy at each training epoch.
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Figure 2. Bullying detection information technology

As an implementation of the trained neural network, an application with a graphical interface
was written. The Ul was developed using the Vue.js framework. To call the Python code, the eel
library was included. Information technology looks like this (see Fig. 2).
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Figure 2 shows the complete architecture of the entire application, based on which it is clear
that all components are isolated and each works independently of other functionality, this
approach avoids potential errors and simplifies the transfer of the desired component to another
application, if there is such a need. The center of all software is a controller that connects the
user interface, the logic of interaction between libraries for parsing data from Telegram, and the
neural network module.
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Figure 3. Application interface and assessing the toxicity of real user comments

The application interface (see Fig. 3) contains several mods, when selected, you can collect
all comments under one post, under a certain number of posts of a specific group or an entire list
of groups. Then statistics are collected based on the assessment of the toxicity of comments
from the neural network. A corresponding diagram with calculations is displayed, which clearly
shows the level of toxicity in the comments.

You can also expand the list of comments that were received by parsing posts. This list
consists of the username and comment. Cleaned comments are submitted for evaluation of the
neural network, but their original versions are displayed for final viewing. The interface
highlights toxic comments in orange, while neutral ones are displayed in white. Thus, in a
matter of seconds it is possible to collect a large amount of data and assess the level of toxicity
of the audience of various groups. You can find the full source code for the project here:
https://github.com/afteralls/ai-cyberbullying-detector.

Results and discussion. As a result of the work, a tool was created that will automatically
recognize cases of insults and help in the fight against cyberbullying.

During the project the following tasks were completed: the theory of neural networks has
been studied, a neural network model was created and compiled, a neural network model has
been trained that can detect cases of online abuse, an application was designed to interact with
the trained model.

Conclusion.

At the end of the article, the relevance of the problem associated with the growth of
cyberbullying in the modern information society is considered, and an innovative solution based
on artificial intelligence is proposed.

As a result of this work, a tool has been created that will automatically recognize instances of
abuse and help in combating cyberbullying with a trained Keras model using the LSTM
architecture.
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Through trial and experimentation with model building, it was found that recurrent neural
networks such as LSTM perform well when processing sequential data such as texts. Using this
architecture allowed the model to identify text message characteristics indicative of
cyberbullying.

Further research may be aimed at expanding the data set and improving the architecture of
the model to improve its accuracy and efficiency in detecting cyberbullying. However, the
results of this study demonstrate that recurrent neural networks can be an effective tool in the
fight against online cyberbullying.
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