
№ 4, 2023 «ШҚТУ ХАБАРШЫСЫ»

343

ИНФОРМАЦИОННЫЕ СИСТЕМЫ
INFORMATION SYSTEMS
АҚПАРАТТЫҚ ЖҮЙЕЛЕР

DOI 10.51885/1561-4212_2023_4_343
IRSTI 20.23.17

D.V. Sukharnikov1, А.Т. Bekishev1, К.Y. Nursakitov1, S.К. Kumargazhanova1,

А.М. Urkumbaeva1, L.К. Bobrov2
1D.Serikbayev East Kazakhstan Technical University, Ust-Kamenogorsk, Kazakhstan
 E-mail: afterallspace@gmail.com
 E-mail: a.nomad.b@mail.ru
 E-mail: Nursakitov@bk.ru*
 E-mail: skumargazhanova@gmail.com
 E-mail: urkumbaeva@mail.ru
2Novosibirsk state university of economics and management, Novosibirsk, Russian Federation
 E-mail: l.k.bobrov@edu.nsuem.ru

APPLICATION OF NEURAL NETWORKS FOR
CYBERBULLYING DETECTION

КИБЕРБУЛЛИНГТІ АНЫҚТАЙТЫН НЕЙРОНДЫҚ ЖЕЛІЛЕРДІ ҚОЛДАНУ

ПРИМЕНЕНИЕ НЕЙРОННЫХ СЕТЕЙ

ДЛЯ ОПРЕДЕЛЕНИЯ КИБЕРБУЛЛИНГА

Abstract. Cyberbullying is a global problem affecting many people, especially children and teenagers.
This phenomenon is common in many countries, causing psychological, emotional and social damage to
its victims. Technologies such as social media and mobile apps exacerbate the problem by providing a
platform for anonymous attacks. To resist cyberbullying, many organizations and governments are taking
action, from zero-tolerance policies to legislative initiatives. Awareness raising and education also play a
key role. At the forefront of the fight against cyberbullying is the development of neural networks that can
automatically detect and block toxic content online. This article describes the main stages of training a
neural network and creating an information technology based on it to protect people from such a
phenomenon as cyberbullying.

Key words: natural language processing, sentiment analysis, machine learning, cyberbullying, neural
network, TensorFlow.

Аңдатпа. Кибербуллинг көптеген адамдарға, әсіресе балалар мен жасөспірімдерге әсер

ететін жаһандық мәселе. Бұл құбылыс көптеген елдерде жиі кездеседі, зардап шеккендерге
психологиялық, эмоционалдық және әлеуметтік зиян келтіреді. Әлеуметтік медиа және
мобильді қосымшалар сияқты технологиялар анонимді шабуылдарға арналған платформаны
қамтамасыз ету арқылы мәселені ушықтырады. Кибербуллингпен күресу үшін көптеген ұйымдар
мен үкіметтер нөлдік төзімділік саясатынан бастап заңнамалық бастамаларға дейін әрекет
етуде. Ақпаратты арттыру мен білім беру де басты рөл атқарады. Кибербуллингпен күрестің
алдыңғы қатарында улы мазмұнды желіде автоматты түрде анықтап, блоктай алатын
нейрондық желілерді дамыту. Бұл мақалада нейрондық желіні оқытудың және оның негізінде
кибербуллинг сияқты құбылыспен күресу үшін ақпараттық технологияны құрудың негізгі
кезеңдері сипатталған.

Түйін сөздер: табиғи тілді өңдеу, сентимент талдау, машиналық оқыту, табиғи тілді
өңдеу,, кибербуллинг, нейрондық желі, TensorFlow.

«ВЕСТНИК ВКТУ» № 4, 2023

344

Аннотация. Кибербуллинг – глобальная проблема, затрагивающая многих, особенно детей и
подростков. Это явление распространено во многих странах, причиняя жертвам
психологический, эмоциональный и социальный ущерб. Технологии, такие как социальные сети и
мобильные приложения, усугубляют проблему, предоставляя платформу для анонимных атак.
Чтобы бороться с кибербуллингом, многие организации и правительства принимают меры: от
политик нулевой терпимости до законодательных инициатив. Повышение осведомленности и
образование также играют ключевую роль. На переднем крае борьбы с кибербуллингом стоит
разработка нейронных сетей, которые могут автоматически определять и блокировать
токсичный контент в сети. В данной статье описаны основные этапы обучения нейронной
сети и создания информационной технологии на её основе по борьбе с таким явлением как
кибербуллинг.

Ключевые слова: обработка естественного языка, сентимент-анализ, машинное обучение,
кибербуллинг, нейронная сеть, TensorFlow.

Introduction. The increase in Internet communication has led to the emergence and growth

of one of the most acute social problems – cyberbullying. Cyberbullying can cause irreparable

harm to the psychological and emotional health of people, cause depression and suicide[1]. A

2022 Pew Research study found that nearly half of all teens (49%) had experienced some form

of cyberbullying (https://www.comparitech.com/internet-providers/cyberbullying-statistics/). At

the same time, with the development of digital technologies and the spread of social networks,

the number of cases of cyberbullying is becoming more and more. One of the effective ways to

detect cyberbullying is to use artificial intelligence technologies[2]. In this paper, a neural

network model has been developed, tools, patterns and architectural solutions for network

training have been proposed; information technology for detecting cases of bullying in social

networks.

Literature Review. This section examines the most current research related to the use of

neural networks to determine cyberbullying.

Article[3] is devoted to the development of a program for determining the sentiment of a

text. The article substantiates the relevance of protecting society from cyberbullying. Methods

of counteracting cyberbullying are analyzed. An indicator of the negativity of site information

has been introduced. The work of the site blocker is discussed in detail. The use of sentiment

analysis, which is based on the use of neural networks, is justified. For sentiment analysis of

information flows, a program was developed in the high-level Python programming language

with the introduction of ready-made trained neural networks into it. A dictionary based on

themes is used.

The main contribution of the authors of the work [4] to the study of the topic is the use of a

method for identifying trolls in social networks, which is based on an analysis of the emotional

state of network users and behavioral activity. To identify trolls, users were grouped into

groups; this grouping is carried out by identifying a similar method of communication. The

distribution of users is carried out automatically thanks to the use of a special type of neural

networks, namely self-organizing Kohonen maps. The group number is also determined

automatically. To determine the characteristics of users on the basis of which the distribution

into groups is made, the number of comments, the average length of a comment and an indicator

responsible for the emotional state of the user are used.

The article [5] discusses the features of the procedure for automatically detecting

cyberbullying in English-language tweets based on the Logistic Regression machine learning

model. It is noted that this model allows you to obtain an accurate result of identifying the

means of implementing electronic bullying, as well as automatically replenish the database with

new cyberbullying markers, including units derived from them.

This work [6] considered solving the problem of multi-class classification of toxic messages

based on gradient boosting using the CatBoost library and neural networks using Keras. In

https://www.comparitech.com/internet-providers/cyberbullying-statistics/

№ 4, 2023 «ШҚТУ ХАБАРШЫСЫ»

345

particular, convolutional neural networks, neural networks with LSTM and GRU architecture

were considered.

The authors[7] used a corpus linguistic-statistical research tool based on the use of relational-

situational analysis, psycholinguistic indicators and dictionaries covering the vocabulary of

emotional and rational assessment; to obtain data on the level of aggressiveness of the

subjects, the Bass-Perry questionnaire was used; When processing the data, binary

classification algorithms, support vector machine (SVM) and random forest (Random Forest),

were used.

Thus, these works show the relevance of using machine learning methods to identify

cyberbullying on social networks. However, further research is needed to develop more accurate

and effective models for detecting cyberbullying on social media platforms.

Materials and methods of research. Training a neural network for text processing includes

several steps:

1. data collection. The first step in training a neural network is to collect enough data. In the

case of working with text, this may include collecting text documents, testimonials, articles, or

any other type of text content appropriate to the task;

2. text preprocessing. After collecting the data, it is necessary to pre-process the text. This

includes removing unwanted characters, numbers, punctuation, converting text to lowercase,

and other operations to clean up data and simplify subsequent analysis;

3. tokenization. The next step is to split the text into individual tokens or words.

Tokenization helps convert textual data into a numeric form, allowing the neural network to

work with it. Each word or character is assigned a unique identifier;

4. creating a model. After pre-processing the data, it is necessary to create a neural network

model. The model defines the architecture of the network, including layers, links, and

parameters. You can choose different architectures such as Recurrent Neural Networks (RNN),

Convolutional Neural Networks (CNN) or Transformers depending on your task;

5. model training. After creating the model, you need to train it on the prepared data. This

process includes feeding training examples to the model, calculating the error (loss), and

optimizing the model parameters using the gradient descent algorithm. Training can include

multiple epochs, where each epoch is a complete pass over all training data;

6. evaluation and tuning of the model. After completing the training of the model, it is

required to evaluate its performance. This may include accuracy, recall, F1 score, or other

metrics, depending on your task. If necessary, you can tweak the model settings or change its

architecture to improve performance.

Each of these stages requires careful work and experimentation in order to achieve good

results and ensure the efficient functioning of the neural network.

The development was carried out in Python, Keras and TensorFlow were used to train the

neural network – these are two packages from Google that are widely used in the field of deep

learning of neural networks [8].

Preparing a dataset for training recurrent networks is one of the most important steps in

creating a model. The steps that are usually included in the process of preparing a dataset for

training recurrent networks include the following:

1. data collection. It is important to have a large and diverse dataset for training recurrent

networks. For this, various data sources can be used, such as social networks, news articles,

forum posts, etc.;

2. data cleaning. Data obtained from various sources may contain many errors, typos and

other inaccuracies that may adversely affect the quality of the model. Therefore, it is necessary

to clean up the data, which includes removing unnecessary characters, correcting typos, etc.;

«ВЕСТНИК ВКТУ» № 4, 2023

346

3. Transform data into a number format: To train recurrent networks, the data must be

converted into a number format that can be used as input to the model. For example, for text

data, character-to-number encoding can be used using methods such as one-hot encoding or

word embedding;

4. splitting the data into training and test sets: after preparing the data and converting it into a

numerical format, it is necessary to divide the data into training and test sets. The training set is

used to train the model and the test set is used to check the quality of the model;

5. Creation of sequences: Recurrent networks work with sequential data, so the data must be

converted into sequences. For example, for text data, you can break the text into sequences of a

fixed length.

In general, preparing a dataset for training recurrent networks is a complex process that

requires a lot of time and patience. However, the right approach will help to better train the final

model and improve its performance in real use [11].

Morphological text analysis is an important step before training a neural network or other

natural language processing model. It includes the analysis and analysis of words in the text to

determine their lexical and grammatical characteristics[12].

The steps that can be performed in the process of morphological text analysis include the

following concepts:

1. tokenization. The text is broken into individual tokens, which can be words or characters.

Tokens serve as the basic units of analysis[9].

2. lemmatization. Reduction of words to their lemmas (basic form). Lemmatization allows

you to reduce the various grammatical forms of a word to a single basic form[13]. For example,

the words “run”, “ran”, “running” will be reduced to the lemma “run”;

3. stemming. The process of stripping affixes from a word to obtain its stem (stem). The

result of stemming may be less precise than lemmatization, but it allows words to be reduced to

their base form for further analysis[14]. For example, the words “run”, “ran”, “running” can be

truncated to the common stem “run”;

4. extraction of syntactic relations. Analysis of connections and relationships between words

in a sentence, such as subject and predicate, dependent and independent constructions[10]. This

allows for a deeper understanding of sentence structure and the context in which each word is

used.

Morphological text analysis helps to make the text understandable for neural network

training, as it provides information about the structure and characteristics of words[16].

Text tokenization is the process of converting text data into sequences of numbers (tokens)

that can be used to train neural networks[9]. When text is used as input to a neural network, it

must be converted to a numeric format. This can be done by breaking the text into individual

words (tokens) and then assigning each word a unique number.

A special dataset was used to train the neural network, which contains 14135 classified

records in russian. The data structure is as follows: comment – user comment, toxic – comment

toxicity score in the form of 0 and 1. You can find the full collection here: https://www.

kaggle.com/datasets/blackmoon/russian-language-toxic-comments?resource=download.

The collected data collection should be brought to a form that the neural network learning

algorithm understands, therefore, first, it is necessary to bring all the words into normal form,

and the necessary tools already exist for this. The pymorphy2, re and nltk packages were used

for this.

The following functions are used to convert sentences into the correct format:

import pymorphy2

import re

№ 4, 2023 «ШҚТУ ХАБАРШЫСЫ»

347

from nltk.corpus import stopwords

TOKEN_RE = re.compile(r’[а-яё]+’)

347roblem_stopwords = stopwords.words(“347roblem”)

morph = pymorphy2.MorphAnalyzer(lang=’ru’)

def tokenize_text(txt, min_lenght_token=2):

 txt = txt.lower()

 all_tokens = TOKEN_RE.findall(txt)

 return [token for token in all_tokens if len(token) >= min_lenght_token]

def remove_stopwords(tokens):

 return list(filter(lambda token: token not in 347roblem_stopwords, tokens))

def lemmatizing(tokens):

 return [morph.parse(token)[0].normal_form for token in tokens]

def text_cleaning(txt):

 tokens = tokenize_text(txt)

 tokens = lemmatizing(tokens)

 tokens = remove_stopwords(tokens)

 return ‘ ‘.join(tokens)

This code implements several functions for preprocessing text in Russian:

1. The necessary libraries are imported: ‘pymorphy2’ for lemmatization, ‘re’ for working

with regular expressions and ‘stopwords’ from the NLTK library for removing stop words.

2. The regular expression TOKEN_RE is defined, which only searches for Russian words

and ignores all other characters in the text.

3. A list of Russian stop words is created and the morphological analyzer pymorphy2 is

loaded.

4. The tokenize_text function receives the text txt and the optional argument

min_lenght_token (the minimum length of the token) and performs the following steps:

• Converts all text to lower case.

• Searches for all tokens (words) that match the regular expression TOKEN_RE.

• Returns a list of tokens whose length is greater than or equal to min_lenght_token.

5. The remove_stopwords function receives a list of tokens and returns a new list without

stop words from the list of Russian stop words.

6. The lemmatizing function takes a list of tokens and returns a list of lemmas (normal forms

of words) using pymorphy2.

7. The text_cleaning function receives the text txt and performs the following steps:

• Tokenizes text using the tokenize_text function.

• Lemmatizes tokens using the lemmatizing function.

• Removes stop words from tokens using the remove_stopwords function.

• Concatenates the remaining tokens into a string using spaces and returns the result.

Thus, the text_cleaning function performs pre-processing of the text, which can be used for

subsequent analysis of text data.

The Keras package used in the project uses the Tokenizer class to tokenize text. It allows you

to convert text into a sequence of numbers, where each word in the text has a unique index.

Df = pd.read_csv(‘vendors/ai/data.csv’)

df[‘comment’] = df[‘comment’].apply(str)

train_features = df[‘comment’]

«ВЕСТНИК ВКТУ» № 4, 2023

348

train_labels = df[‘toxic’]

vocab_size = 20000

max_seq_len = 20

vector_size = 300

tokenizer = Tokenizer(oov_token=”<OOV>”, num_words=vocab_size)

tokenizer.fit_on_texts(train_features)

sequences_train = tokenizer.texts_to_sequences(train_features)

padded_train = pad_sequences(sequences_train, padding=’post’, maxlen=max_seq_len)

The first lines of code load the data from the file “data.csv” into a DataFrame object,

previously normalized, then a new “comment” column is created, in which each value is

converted to a string to avoid errors.

Further, the data is divided into features and labels. The features are the “comment” column,

which contains text comments, and the tags are the “toxic” column, which contains information

about whether the comment is toxic or not.

About variables:

1. vocab_size (dictionary size) – the number of unique words in our corpus of texts that will

be used to build word vectors;

2. max_seq_len (maximum sequence length) – the maximum length of the sequence of

words that will be used to train the model;

3. vector_size (vector dimension) – the number of vector dimensions that each word in our

dictionary will represent.

For text tokenization, an object of the Tokenizer class is used. The tokenizer parameters are

defined in the class constructor: oov_token is a token that will be used for all words that were

not taken into account during training; num_words is the maximum number of words that will

be taken into account when training. In this case, the value is set to 20000.

Then, the fit_on_texts() method trains the tokenizer on the text data passed as an argument.

Next, the texts_to_sequences() method converts text comments into sequences of numbers

based on the trained tokenizer. Finally, the pad_sequences() method adjusts the length of each

sequence to max_seq_len, padding it with zeros or truncating it if the length is greater than

max_seq_len.

It is worth explaining in detail why to further limit the size of a previously optimized

dictionary. The dictionary size limit when training a neural network has several reasons:

• First, large vocabularies result in a large number of parameters that must be trained. This

requires more computational resources and time, which complicates the learning process and

can lead to overfitting of the model.

• Secondly, there are often words in the text that appear very rarely or even only once. Their

use in the model is inefficient, since there will not be enough examples for them to well evaluate

their contribution to the prediction. The dictionary constraint allows you to remove such words

from the model and improve its performance.

• Finally, limiting the dictionary size helps to reduce noise in the data[10]. Using a dictionary

that is too large can cause the model to include random noise words that have nothing to do with

the predicted class.

Thus, limiting the size of the dictionary is an important strategy when training neural

networks to work with text data [17].

The process of creating a neural network model in Keras and selecting layers are very

important steps in developing and training neural networks. Choosing the right architecture and

hyperparameters for a neural network can significantly affect the quality of its work. With the

wrong choice of layers and parameters, the network may not learn or give poor results [18].

№ 4, 2023 «ШҚТУ ХАБАРШЫСЫ»

349

Keras provides many layers and options that can be used to customize the model to suit the

problem you are trying to solve. For example, using convolutional layers can be efficient for

image processing, while using recurrent layers can be useful for processing sequential data such

as texts and time series.

The right choice of layers and parameters can also increase the efficiency of neural network

training[18]. For example, using the ReLU activation function instead of the sigmoid can speed

up learning by calculating gradients quickly. Also, using Dropout and BatchNormalization

layers can prevent overfitting and improve the quality of training.

In general, building an efficient neural network model is a process that requires careful data

analysis and experimentation with different architectures and parameters.

After long attempts to get the best result of the neural network, the implementation of the

following type of model was chosen:

def get_model():

 model = Sequential()

 model.add(Embedding(input_dim=vocab_size, output_dim=vector_size,

input_length=max_seq_len))

 model.add(Dropout(0.6))

 model.add(LSTM(max_seq_len, return_sequences=True))

 model.add(LSTM(6))

 model.add(Dense(1, activation=’sigmoid’))

 return model

callbacks = [keras.callbacks.EarlyStopping(monitor=”val_loss”, patience=2, verbose=1,

mode=”min”, restore_best_weights=True

)]

model = get_model()

First of all, the get_model() function is defined, which returns a serial model of the neural

network.

The first layer of the model is the Embedding layer, which converts integers (word indices)

into fixed-length dense vectors. The following parameters are set for this layer:

• input_dim=vocab_size is the size of the dictionary that specifies the input value for the

layer;

• output_dim=vector_size — output space dimension, ie. The number of dimensions of the

vector that is expected at the output;

• input_length=max_seq_len is the length of each sequence that is passed to the layer.

Next, a Dropout layer with a coefficient of 0.6 is added to the model, which prevents the

model from retraining.

Then two LSTM layers are added and used to process the sequences. The first layer of the

LSTM returns a sequence, while the second layer only returns the last output element, allowing

the output to be dimensionally reduced.

Finally, a Dense layer is added with one output neuron and a sigmoid activation function,

which allows texts to be classified into two classes.

The next line defines the callbacks array, which contains the callbacks that are executed

during model training. In this case, EarlyStopping is used, which stops training when the

val_loss metric does not improve for two epochs (used when compiling the model).

A model is created (see Fig. 1) by calling the get_model() function.

The structure of the developed model:

1. Sequential is the container used to create the model. This container contains one or more

«ВЕСТНИК ВКТУ» № 4, 2023

350

layers that are added sequentially one after the other.

2. Embedding is a layer used to create vector representations of words. Each word in the

input dataset is converted to a vector of the given dimension. These vectors are used to pass

word information to the next layer of the model.

Figure 1. The developed neural network model

3. Dropout is the layer used to regularize the model. It helps prevent overfitting by removing

randomly selected input data elements with a given probability. This allows the model to learn

more general features.

4. LSTM is a recurrent layer used to parse sequential data such as text. It processes the

sequence of inputs element by element and stores information about the previous elements in its

memory.

5. Dense is a fully connected layer that takes input from previous layers and produces model

predictions. In the code above, the layer has a single output and uses a sigmoid activation

function to generate a binary output – the model’s prediction about the offensiveness of the

comment. A more complex classification is not required in this case.

The finished model needs to be trained:

model.compile(optimizer=’adam’, loss=’binary_crossentropy’, metrics=[‘accuracy’])

tf.config.run_functions_eagerly(True)

history = model.fit(padded_train, train_labels, validation_split=0.33, callbacks=callbacks,

epochs=10)

The model.compile method is used to customize the model training process. Three important

parameters are defined here:

1. optimizer is an optimizer that determines the algorithm for updating model weights during

training. After much testing, the best result was obtained using the adam optimizer, which is a

stochastic gradient descent optimization technique with variable size stochastic gradient steps.

2. loss is a loss function that measures how well the model performs on the training data. In

this case, based on the requirements of the model, the binary_crossentropy loss function is used,

which is usually used for binary classification.

3. metrics is a list of metrics used to evaluate the performance of the model. In the variant

above, the accuracy metric was used, which measures the proportion of correct answers.

Next, calling tf.config.run_functions_eagerly puts TensorFlow into eager mode, which

№ 4, 2023 «ШҚТУ ХАБАРШЫСЫ»

351

allows TensorFlow operations to execute immediately, as opposed to TensorFlow 1.x’s compute

graph and lazy execution.

Finally, model.fit starts the training process. Here, padded_train and train_labels represent

the training dataset, and validation_split=0.33 means that 33% of the data will be used as the

validation set to evaluate the performance of the model on data that it did not see during

training.

Callbacks=callbacks is used to define additional callbacks to be executed during the learning

process, such as early stopping. The array itself was mentioned earlier in the model design

phase.

And epochs=10 specifies the number of epochs (full training cycles on the training dataset)

that the model will train.

Here it is worth dwelling on the loss functions, the optimizer, and the choice of the number

of training epochs in order to analyze in more detail why these parameter values were used.

The binary crossentropy loss function is used in binary classification problems (when there

are only two classes), and it measures the difference between the real and predicted values

between two classes. It is used to determine how well a neural network models class

probabilities and is the most common loss function for binary classification problems.

The adam optimizer is a stochastic optimization technique that is used to tune model

parameters based on loss function gradients[19]. Adam is an adaptive optimization method that

adjusts the learning rate for each parameter individually, which allows the neural network to

converge faster to optimal parameter values.

The number of epochs determines how many times the model will run through the entire

training dataset. Each epoch consists of one or more training steps, during which the model

receives training data as input, calculates the predictions and compares them with the true

values, and then optimizes the parameters based on the loss function.

The number of epochs is chosen based on how quickly the model converges to optimal

values, and what accuracy is achieved on the validation data set.

When choosing the number of epochs, it should be taken into account that too few epochs

can lead to underfitting of the model, and too many epochs can lead to overfitting.

After running all the previously written code, the process of training the model starts, in this

case the result was as follows:

 # Output:

Epoch 1/10

296/296 [==============================] – 133s 449ms/step

- loss: 0.4777 – accuracy: 0.7656

- val_loss: 0.2748 – val_accuracy: 0.9016

Epoch 2/10

296/296 [==============================] – 150s 507ms/step

- loss: 0.2191 – accuracy: 0.9207

- val_loss: 0.2618 – val_accuracy: 0.8928

Epoch 3/10

296/296 [==============================] – 157s 530ms/step

- loss: 0.1150 – accuracy: 0.9623

- val_loss: 0.2914 – val_accuracy: 0.8939

Epoch 4/10

296/296 [==============================] – ETA: 0s

- loss: 0.0641 – accuracy: 0.9808

Restoring model weights from the end of the best epoch: 2.

«ВЕСТНИК ВКТУ» № 4, 2023

352

296/296 [==============================] – 132s 446ms/step

- loss: 0.0641 – accuracy: 0.9808

- val_loss: 0.3445 – val_accuracy: 0.8857

Epoch 4: early stopping

As can be seen, in the first training epoch, the model achieved a loss of 0.4777 and an

accuracy of 0.7656 on the training data, and a loss of 0.2748 and an accuracy of 0.9016 on the

validation data.

In the second epoch, the model achieved a significant improvement in accuracy, reaching

0.9207 on the training data and 0.9020 on the validation data, with a loss of 0.2605.

In the third epoch, the model continued to improve, reaching a loss of 0.1150 and an

accuracy of 0.9623 on the training data, but on the validation data it slightly worsened to a loss

of 0.2914 and an accuracy of 0.8939.

At the end of the fourth epoch, the model retained the weights from the best epoch (epoch 2)

because that epoch performed best on the validation data. And as a result, the model achieved a

loss of 0.0641 and an accuracy of 0.9808 (98%) on the training data in this epoch. The training

process ended ahead of schedule.

In conclusion about the training process, it can be noted that the model based on the LSTM

architecture was trained on the classification dataset and showed good results, improving its

accuracy at each training epoch.

Figure 2. Bullying detection information technology

As an implementation of the trained neural network, an application with a graphical interface

was written. The UI was developed using the Vue.js framework. To call the Python code, the eel

library was included. Information technology looks like this (see Fig. 2).

№ 4, 2023 «ШҚТУ ХАБАРШЫСЫ»

353

Figure 2 shows the complete architecture of the entire application, based on which it is clear

that all components are isolated and each works independently of other functionality, this

approach avoids potential errors and simplifies the transfer of the desired component to another

application, if there is such a need. The center of all software is a controller that connects the

user interface, the logic of interaction between libraries for parsing data from Telegram, and the

neural network module.

Figure 3. Application interface and assessing the toxicity of real user comments

The application interface (see Fig. 3) contains several mods, when selected, you can collect

all comments under one post, under a certain number of posts of a specific group or an entire list

of groups. Then statistics are collected based on the assessment of the toxicity of comments

from the neural network. A corresponding diagram with calculations is displayed, which clearly

shows the level of toxicity in the comments.

You can also expand the list of comments that were received by parsing posts. This list

consists of the username and comment. Cleaned comments are submitted for evaluation of the

neural network, but their original versions are displayed for final viewing. The interface

highlights toxic comments in orange, while neutral ones are displayed in white. Thus, in a

matter of seconds it is possible to collect a large amount of data and assess the level of toxicity

of the audience of various groups. You can find the full source code for the project here:

https://github.com/afteralls/ai-cyberbullying-detector.

Results and discussion. As a result of the work, a tool was created that will automatically

recognize cases of insults and help in the fight against cyberbullying.

During the project the following tasks were completed: the theory of neural networks has

been studied, a neural network model was created and compiled, a neural network model has

been trained that can detect cases of online abuse, an application was designed to interact with

the trained model.

Conclusion.

At the end of the article, the relevance of the problem associated with the growth of

cyberbullying in the modern information society is considered, and an innovative solution based

on artificial intelligence is proposed.

As a result of this work, a tool has been created that will automatically recognize instances of

abuse and help in combating cyberbullying with a trained Keras model using the LSTM

architecture.

https://github.com/afteralls/ai-cyberbullying-detector

«ВЕСТНИК ВКТУ» № 4, 2023

354

Through trial and experimentation with model building, it was found that recurrent neural

networks such as LSTM perform well when processing sequential data such as texts. Using this

architecture allowed the model to identify text message characteristics indicative of

cyberbullying.

Further research may be aimed at expanding the data set and improving the architecture of

the model to improve its accuracy and efficiency in detecting cyberbullying. However, the

results of this study demonstrate that recurrent neural networks can be an effective tool in the

fight against online cyberbullying.

References

1. Mogunova M. M. Kiberbulling kak novaya opasnost’ //Vestnik Severo-Kazahstanskogo Universiteta

im. M. Kozybaeva. – 2022. – №. 2 (51). – S. 99-106.
2. Evseev V. L., Sadekova R. Sh. Countering cyberbullying in social networks // Security of

information technologies. – 2021. – T. 28. – No. 3. – Pp. 92-102.
3. Pleshakova E. S. et al. Identification of cyberbullying using neural network methods // Security

Issues. – 2022. – No. 3. – Pp. 28-38.
4. Ilyukovich T. S. Recognition of cyberbullying in English-language tweets using machine learning //

Science today: problems and ways to solve them. – 2020. – P. 94-97.
5. Vasilchenko A. V. DEVELOPMENT OF A SYSTEM FOR AUTOMATIC DETECTION OF TOXIC

COMMENTS IN SOCIAL NETWORKS //STUDENT SCIENCE: CURRENT ISSUES,
ACHIEVEMENTS AND INNOVATIONS. – 2021. – pp. 35-38.

6. Kovalev A.K. et al. Methods for identifying psychological characteristics of the author from the text
(using the example of aggressiveness) // Issues of cybersecurity. – 2019. – No. 4 (32). – Pp. 72-79.

7. Kisova V.V., Semenova E.A. Ispol’zovanie sovremennyh komp’yuternyh tekhnologij dlya
opredeleniya verbal’noj reprezentacii kiberbullinga u podrostkov //Problemy sovremennogo
pedagogicheskogo obrazovaniya. – 2022. – №. 77-4. – S. 381-383.

8. Géron A. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. – “ O’Reilly Media,
Inc.”, 2022.

9. Nikitin YU. V., Horoshilov A. A., Makarova A. E. Tokenizaciya tekstov na osnove metoda
funkcional’nyh shablonov //Sistemy i sredstva informatiki. – 2022. – T. 32. – №. 4. – S. 59-68.

10. Platonov E. N. 354rob. Vyyavlenie i klassifikaciya toksichnyh vyskazyvanij metodami mashinnogo
obucheniya //Modelirovanie i analiz dannyh. – 2022. – T. 12. – №. 1. – S. 27-48.

11. Sohinov D. YU., Kravchenko R. A., Logacheva O. V. REKOMENDACII PO PODGOTOVKE
DATASET DLYA MASHINNOGO OBUCHENIYA. – 2023.

12. Zhubanov A. K. Ob avtomaticheskom morfologicheskom analize teksta prirodnogo (estestvennogo)
yazyka //Tiltanym. – 2022. – №. 4. – S. 3-7.

13. Kovalevskij P. O. AVTOMATICHESKAYA OBRABOTKA TEKSTA (PROBLEMA LEMMATIZACII)
//Yazyk, kul’tura, mental’nost’: 354roblem i perspektivy filologicheskih issledovanij. – 2022. – S.
135-138.

14. KORYUKIN A. V. ISSLEDOVANIE VLIYANIYA STEMMINGA I LEMMATIZACII NA KACHESTVO
BINARNOJ KLASSIFIKACII PO TONAL’NOSTI KRATKIH TEKSTOVYH KOMMENTARIEV
//Aktual’nye issledovaniya. – 2021. – S. 10.

15. Pimeshkov V. K., Dikovickij V. V., Shishaev M. G. Izvlechenie otnoshenij tezaurusa iz tekstov na
estestvennom yazyke s ispol’zovaniem statisticheskih i lingvisticheskih metodov //Trudy Kol’skogo
nauchnogo centra RAN. – 2020. – T. 11. – №. 8-11. – S. 188-192.

16. Sidorova E. A. Kompleksnyj podhod k issledovaniyu leksicheskih harakteristik teksta //Vestnik
SibGUTI. – 2019. – №. 3. – S. 80-88.

17. Nemchinova E. A., Plotnikova N. P., Fedosin S. A. Podgotovka i obrabotka normativno-spravochnoj
tekstovoj informacii dlya klassifikacii s pomoshch’yu iskusstvennyh nejronnyh setej //Nelinejnyj mir.
– 2019. – T. 17. – №. 2. – S. 27-33.

18. Semchenko R. V., Erovlev P. A. Programmirovanie nejronnyh setej v Python s ispol’zovaniem
bibliotek keras i tensorflow //Postulat. – 2020. – №. 7 iyul’.

19. Zhang Z. Improved adam optimizer for deep neural networks //2018 IEEE/ACM 26th international
symposium on quality of service (IWQoS). – Ieee, 2018. – С. 1-2.

