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This study addresses the challenge of resource allocation in dynamic and
uncertain environments by evaluating five mathematical models: Markov
Decision Process (MDP), Integer Programming, Multi-Agent Systems,
Scheduling Problems, and Assignment Models. The relevance of this
problem lies in the need for effective decision-making tools under time and
resource constraints, particularly in IT and service-oriented industries
where operations are often unpredictable and require adaptive
optimization strategies. The main aim of this research is to perform a
comparative analysis of the selected models using performance metrics
such as execution time, cost, and memory consumption. The research
methodology involves conducting a series of simulations on synthetically
generated datasets that reflect realistic operating conditions in terms of
workload variability, task dependencies, and limited resources. Results
indicate that Integer Programming delivers the lowest solution cost but
requires significantly more execution time, making it suitable for scenarios
where accuracy outweighs speed. On the other hand, MDP and Multi-
Agent models offer faster computation and flexibility, but with relatively
higher solution costs. Scheduling and Assignment Models demonstrate a
balanced trade-off but are less scalable under complex constraints. These
findings highlight the inherent trade-off between time efficiency,
computational complexity, and solution optimality. The proposed
comparison contributes to identifying suitable approaches based on task-
specific priorities and operational goals. The theoretical significance of the
work lies in the integration of multiple optimization techniques into a
structured comparative framework, enhancing the understanding of model
behaviour under uncertainty. The practical contribution focuses on guiding
system architects and decision-makers in selecting the most appropriate
modelling tools for real-time systems in IT and service environments.
Future work will explore enhancements to scalability, hybrid modelling
strategies, and adaptive algorithms to support industrial-scale
implementations with dynamic data inputs.
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TyniHai ce3aep:

TYWIHAEME

OHTalAaHABIPY,
pecypcrapArl 6eay,
AVHAMMKaALBIK ecerltep,
MaTeMaTUKaAbIK
MoJeAabaep, OyTiH
caHjapMeH
IIporpaMmaday, KeI
areHTTi XXYylieaep,
Mapxos niponieccrepi.

bya seprrey >XyMBICH AMHAMMKAABIK >XKoHe Oearici3 opraga pecypcrapabl
OeayaiH THiMALI KOAAApbIH KapacTBIPBI, Oec TypAi MaTeMaTMKaAbIK,
MoOJeabTe CaabICTEIpMaAbl Taa4ay XKYprisyai MmakcaT eteai. Kapacroiprlaran
Mogeapdep: Mapkos mremrim kabwlagay mporneci (MDP), OyTiHcaHABIK
OarjapaaMajay, KeIlareHTTi >Kyiiedep, >KOCIapaay ecemTepi >KoHe
TaraiiblHAQy MOJeAbJepi. 3epTTeainl OThHIpFaH MacedeHiH esekriairi — IT
JK9He KBI3MET KepceTy cadadapblHAa yaKbIT IIeH pecypcTap IIeKkTeyai
Kardaiiga TMiMAL IIenniM KaOblagay KypaajapblHbIH KaskeTTidiringe. bya
casaja IpollecTep >KMi ©3Tepill OThIpaAbl, COHABIKTaH OHTallAaHABIPYFa
GertiMaeAreH Taciagep KaKeT. 3epTTeyAiH Herisri MaKcaThl — KOpCeTiATeH
MoJeAabJepal OpblHAAy yaKbITBI, IIelIiM KYHBI JKoHe >KaJj IHaiijadaHy
CHUSIKTHI KpuTepuiilep OOVIBIHIIA CaABICTHIPY. 3epTTey dAicTeMeci — HaKThI
JKarjailidapabl  eckepe OTBIPHII >KacadfaH CHHTeTUKAABIK JepeKkTep
HeriziHge OipKaTap MoJeaAbaey ToxXipubeadepiH >Kyprisyre HerizaeAreH.
Hoatmxeaep OyriHcaHABIK OarjapaaMaday MOAeAiHIH IIelIiMHIH eH
TOMeHIi KYHBIH KaMTaMachl3 eTeTiHiH KepceTTi, OipakK OHBI OpBIHAAY
yakpITBl Dacka ogicrepre kaparaHda kebipek. MDP >koHe KeIlareHTTi
KyifeAepAiH OpPBIHAAAY >KBIAAAMABIFRI >KOFaphl, Oipak IIemimM KYHEI
KbIMOaThIpakK. JKocmapaay SkoHe TaraliblHAQy MoOJeabJepi HOTIDKeaAepi
opTalla, adailga Kypdeai >Karjailaapda MacmTaOTaaybl KUBIHAQY.
3epTTey4iH TeOpUAABIK MAaHBI3ABLABIFEI — OipHellle OHTalAaHABIPY
9JicTepiH CaABICTHIPMAaAbl KypblAbIMFa OipikTipy. A4 IIpakTUKaAbIK,
MaHBbI3ABLABIFBI — HAKTBI yaKbIT pe>KMMiH/e JKYMBIC iCTeITiH Kylieaep yIIiH
MoJeabAepAi TaHAayF¥a d4icTeMeaik Heris OepyiHge. bBoaarmakra seprrey
OarpITTaphl MOAEAbAEPAIH MKeMAIAiriH >KoHe ©HAIpicTiK ayKbIMAAFbl
OertiMAeay MyMKiHAIKTepiH apTThIpy¥a OarbITTadajbl.

Karouessie caoBa:

AHHOTAII VIS

ONTUMM3AIINSI,
pacripeseaenue
pecypcos,
AVMHaMIMJIEeCKIe 3a4a4un,
MaTeMaTu4ecKne
MOAeAW, I1eA0UNCAEHHOe
IporpaMMMpOBaHNe,
MyAbTHareHTHbIe
CUCTeMBI, MapKOBCKIie
IIPOIIECCHI.

/JaHHOe uccAejoBaHMe IIOCBAILEHO peIleHMIO 3ajauM paclipeseleHus
pecypcoB B YCAOBMAX AVHaMUYHONM M HeOIpeAeAE€HHON cpeAbl IIyTéM
CPaBHUTEABHOIO aHAAM3a ILATH MaTeMaTU4eCKUX MOJeAell: MapKOBCKUIA
Ipouecc MDP),
IIpOrpaMMIpPOBaHNe, MHOTOAreHTHBIE CHUCTeMBI, 3a4auy PacIMCaHUsI U

HIPUHATUA pereHmit 11e104YCAeHHO®
MoJeAM Ha3HaueHMs. AKTyaAbHOCTb IIpPOOJEMBI  3aKAIOYaeTcs B
HeoOxoanMMocTy  DPPEKTUBHBIX MHCTPYMEHTOB IOAAEPKKM TPUHATIA
PpelleHnit B yCAOBMAX OTPaHMYEHHOCTY BPEMEHH 1 PeCypCcoB, OCODEHHO B
IT-cdepe M CcepBUCHBIX OTpacAsX, TIJe IIPOILeCCHl YacTO HOCAT
HecTaOMABHBINI ~ XapakTep U TpeOyIOT aJalTMBHBIX IIOAXOA0B K
ontuMumsanyn. lleap mccaesoBaHMA — IIPOBECTM COIOCTaBMTEABHBIN
aHaAM3 YKa3aHHBIX MoOJeJeil IO TaKuM KpuUTepusM, KaK Bpems
BBIITO/HEHNsI, CTOMMOCTD pellleHNs U HoTpebaeHne naMsTH.
Metogoaoruss  mccaeiOBaHMA — BKAIOYAET — CEPUIO  CUMYASALMOHHBIX
DKCIIePVIMEHTOB Ha CMHTETUYeCKM CreHepMpOBaHHBIX JaHHEIX, OTpa’kalo-
IIMX peaAbHBle YCAOBMA (PYHKIIMOHMPOBAHILL: M3MEHUMBYIO Harpysky,
3aBUCHMMOCTSD 3a4a4 U OTpaHIYeHHbIe pecypchl. Pe3yabTaThl ITOKa3aAam, 4To
MOJeab 11eA0YMCAEHHOTO IIPOrpaMMMpOBaHNs oOecliednBaeT HalMeHb-
IIyI0 CTOMMOCTD pellleHus1, HO TpebyeT 60bllle BpeMeH! Ha BHIITO/AHEHNe,
9TO AeaaeT eé IMPUMEHUMOI B CIIeHapWIX, TAe IPUOPUTETOM SIBAAETCA
TOYHOCTh. Mogean Ha ocHose MDP 1 MHOroareHTHOIO II04AXOJa
AEMOHCTPUPYIOT 0Ooee OBICTpOe BBIIIOAHEHNMe, HO C IIOBBIINIEHHBIMM
3aTpatamMi. Mogean pacrnmcaHMs ¥ Ha3HayeHNs ITOKa3bIBalOT cOaJaHCH-
pOBaHHBIe Pe3yAbTaTEl, HO Xy>Ke MacIITabUpyIOTCs TP YCAOKHEHUU
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ycA0BUIA. BBIBOABI MCCAeA0BaHIS TTOAYEPKUBAIOT HEOOXOAMMOCTH BEIOOpa
MOJeAN Ha OCHOBE IIPUOPUTETOB — CKOPOCTY MAM MUHIMU3ALINN 3aTPaT.
Teopermueckass 3HaYMMOCTh pabOTH 3aKAIO9aeTcsi B OOBeAVHEHU!
Pa3AMYHBIX METOAO0B ONTUMMU3AIIUU B €4UHYIO CPABHUTEABHYIO CTPYKTYPY.
ITpakTiyeckas IIEHHOCTH COCTOWUT B IpeAOCTaBAEHMN peKOMeHAAIUIT 110
BRIOOPY TOAXOAAIINX WMHCTPYMEHTOB MOAEAUPOBaHUA AAsA  CUCTEM
peaAbHOrO BpeMeHN. B JaabHeiinieM IIAaHUPYETCsl — paclIdpeHIe
MacITabMpyeMoCTy MoJeAel U MHTeTpanusa ajalTUBHBIX aATOPUTMOB
AZsl IPOMBIIILIEHHOTO IIPUMEHEHNI.

INTRODUCTION

Modern IT services operate in conditions of high variability: tasks enter the system at
random times, performers have different availability and qualifications, and requirements for
deadlines and priorities can quickly change. Such features are typical for technical support, cloud
infrastructure maintenance, DevOps process support and other areas of IT services. In these
conditions, it becomes critically important to effectively distribute tasks between available
performers, minimizing response time, reducing costs and adhering to service level agreements
(SLAs).

Traditional methods of work allocation, based on static information and predetermined
schedules, are ineffective in the presence of incomplete or constantly changing information. This
creates a need for new mathematical models and optimization methods that can take into account
the dynamic nature of the environment, uncertainty, and the stochastic nature of incoming tasks.

The objective of this study is to develop and analyze mathematical models of task
distribution in an IT environment with dynamic parameters, as well as to compare various
optimization approaches: from classical heuristics and linear programming methods to stochastic
models such as Markov decision processes (MDP) and modern reinforcement learning
algorithms. The proposed models are focused on practical application in real-time systems and
are aimed at improving the efficiency and sustainability of IT process management.

The problem of efficient task allocation among agents in dynamic and distributed
computing environments remains one of the central challenges in the field of optimization and
intelligent management systems. Contemporary approaches to this issue encompass a wide range
of methods — from classical heuristics to reinforcement learning algorithms applied under
conditions of uncertainty and stochastic variability.

LITERATURE REVIEW

The literature pays particular attention to aspects such as cooperative agent interaction,
limited resource availability, time constraints, and the necessity for real-time adaptive strategies.
This section provides a critical analysis of current scientific publications focusing on
mathematical models and optimization methods used to solve task allocation problems across
various architectures — from edge and cloud systems to clusters designed for machine learning.
The issue of dynamic and cooperative task allocation in distributed environments has been
actively studied in recent years in the context of enhancing the efficiency of distributed
computing systems. The DC-MATA (Dynamic and Cooperative Multi-Agent Task Allocation)
problem is considered within the framework of cooperative organization involving individually
rational agents. The author proposes a learning-based approach that improves Nash equilibrium
convergence in dynamically changing conditions (Costa, 2024).

The problem of dynamic task allocation and service migration in Edge-Cloud IoT systems
is discussed in (Dynamic Task Allocation and Service Migration in Edge-Cloud IoT System Based
on Deep Reinforcement Learning, 2022), where the goal is to minimize cloud load while
considering migration and latency constraints. The proposed solution is based on the Deep
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Deterministic Policy Gradient (DDPG) algorithm, which effectively learns in discrete action
spaces. A further development of optimal task offloading strategies in edge environments is
presented in (Pradhan, Tripathy & Matam, 2024), where the focus is on predicting resource
availability before making offloading decisions. The reinforcement learning approach improves
resource utilization and reduces idling. The optimization of task offloading in MEC environments
with stochastic task arrivals is addressed in (Dynamic Task Offloading Optimization in Mobile
Edge Computing Systems with Time-Varying Workloads Using Improved Particle Swarm
Optimization, 2024). The authors apply a modified Particle Swarm Optimization (PSO) algorithm
for adaptive task redistribution. The method outperforms Genetic Algorithms (GA) and
Simulated Annealing in terms of performance. Han, Li, and Zhou (2023) propose a service
migration strategy designed for edge environments with limited resources. A multidimensional
Markov decision process combined with a Deep Q-Network (DQN) algorithm enables near-
optimal decision-making, leading to reduced latency and energy consumption. Another
important direction in the literature is multi-resource scheduling, particularly in machine
learning clusters. Studies (Joe-Wong et al., 2012; Peng et al., 2018; Gu et al., 2019) emphasize that
most existing systems focus on a single resource type (e.g., GPU), which compromises scheduling
accuracy and efficiency in environments with resource competition. Recent works (Li et al., 2023;
Noghabi et al., 2020) highlight the increasing demand for systems that enable adaptive task
allocation, considering multiple resource types and the stochastic nature of task arrivals.
Reinforcement learning (RL) has emerged as a critical tool for addressing these challenges,
particularly in online combinatorial environments with complex constraints (Yu et al., 2021; Mao
et al., 2016; Xu et al., 2023). Allocating resources to process tasks online is a complex problem,
especially when resource availability is uncertain. One effective approach to address this
challenge is to adapt task allocation problem formulations to account for dynamic resource
availabilities. This can be achieved by using a prediction model that estimates task processing
times for all authorized resources. The proposed adaptations have been evaluated and compared
with traditional allocation strategies, such as shortest queue, random, and round-robin methods,
showing better performance (Kunkler & Rinderle-Ma, 2024). In scenarios where resource demand
is volatile and stochastic, the uncertainty in resource availability must be considered for optimal
allocation. To tackle this, a stochastic programming framework is introduced for resource
distribution problems. This framework ensures that the allocation is both efficient and adaptive
to changing conditions. Experimental results demonstrate that the stochastic method
outperforms deterministic approaches, achieving an average improvement of 1% in expected
revenue (Lee et al., 2024).

MATERIALS AND METHODS OF RESEARCH

This paper discusses various mathematical models for optimizing task allocation in
dynamicIT environments. These models allow one to effectively consider uncertainty, variability,
and constraints in real time. Stochastic models, integer programming problems, multi-agent
systems, and queueing theories are proposed as the main optimization tools. Each of the models
will be considered from the point of view of its application in real IT environments, such as
technical support, CI/CD processes, and infrastructure management.

MDP (Markov Decision Process)

We consider a system in which the state of the environment at time step t is designated as
s, action (task distribution) — at, and the objective function is the maximum expected reward (for
example, minimizing the total downtime or SLA violations):

m* = argmax E[Si2o y'R(sc )] M
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where:

- strategy (policy),

R(s;, ay)- reward (e.g. penalty for SLA violation),

y € [0,1]- discount factor.

The transition between states is modeled by probabilities P(s;4+4 | s;, a;) that may be known
or estimated.

Formulating the problem as an integer programming problem

The model is applied in pseudo-static or quasi-dynamic conditions (for example, in the
context of planning in small time windows):

N M
mil’lz Z CijXij, (2)

i=1 j=1
at restrictions:

- 2 X;j < 1,Vi- each task is assigned to no more than one performer.

- 2i xij < C;,Vj- do not exceed the performer's limit j;

- X € 0,1
where:

- ¢;j- the cost of assigning a task i to an executor j;

- ;- resource limitation.

Multi-agent production

Each executor is an agent that decides whether to accept or reject a task based on its local
state stj. The system strives for equilibrium or global optimization through coordination (e.g.,
using auctions, RL, or contract algorithms):

Each worker is an agent that decides whether to accept or reject a task based on the local
state stj . The system strives for equilibrium or global optimization through coordination (e.g.,
auctions, RL, or contract algorithms):

Vj € A:a] = argmax Q/(s/, a), 3)
acAl

where:

Q’- assessment of the benefit of the agent's action j;

A- set agents (performers).

The following models are widely used to describe systems with dynamic task arrival and
limited resources. In the context of IT services, tasks arrive at a certain rate (e.g. Poisson), and it
is necessary to distribute them among several performers to minimize waiting time or SLA
violations.

Mathematical model of task schedule

Let's consider a set of problems:

T ={ty, ty, ... tn},
and many performers:
W = {wy, wy, ..., wp }.
Let ¢;; be the costs (time, labor or cost) associated with the execution of the task t; by the
performer w;, and x;; € 0,1 let be a binary variable that takes the value 1 if the task ¢; is assigned

to the performer w;.
Target function:

m
min Z Cij -xij. (4)

n
i=1 j=1
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Restrictions:
Each task must be assigned to one performer:

Z}":l xj=LVviel..,n (5)

The total load of the performer must not exceed the permissible value L;:
Z?:l xij . di < LJ,V] € 1, ., m, (6)

where d; is the duration of the task t;.

Assignment model

This is a special case when the number of tasks and performers coincides, and each task
must be assigned to one performer. Model is described next way:

min Cij * Xijs @)

n n
i=1 j=1
at restrictions:

Z?:l xl-j = 1,Z?=1 xi]- = l,xi]- € 0,1 (8)

RESULTS AND THEIR DISCUSSION

This paper addresses the problem of dynamic task allocation in an IT system, where
multiple performers with limited resources require efficient optimization methods to enhance
performance and minimize costs. The task is to optimally distribute tasks between performers
under conditions of changing priorities, time and resource constraints.

The system must consider the following aspects:

- Dynamism: Tasks arrive randomly with different priorities, execution times, and
resource requirements. These characteristics may change over time, requiring an adaptive
approach to their distribution.

- Limited resources: Each executor has a limitation on time or computing resources (e.g.
network bandwidth, server power).

- Task priorities: Tasks have different priorities depending on their importance, deadlines,
and other factors, requiring flexibility in deciding which tasks to process first.

- Uncertainty: Incoming task statistics may change, and the exact information about tasks
may not be complete at the time they are received.

Thus, the real-time task allocation problem can be formulated as: Minimize the total
waiting time, the level of SLA violation (if any), and optimize resource utilization given the
constraints.

Restrictions:

1. Each task must be assigned to one performer.

2. The total load of the performer must not exceed its resource limitations.

3. Priority tasks should be processed first.

4. The task execution time cannot exceed its time limit.

The dynamic nature of the problem suggests the use of adaptive and learning models that
can change their decisions depending on changes in incoming data and the current state of the
system.

Algorithm for solving the problem

The following diagram (Fig. 1) illustrates the algorithm for dynamic task distribution and
strategy evaluation. It outlines the steps involved in selecting the appropriate distribution
strategy, evaluating its effectiveness, and adapting to changing conditions using techniques such
as MDP, multi-agent systems, and reinforcement learning.
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The following table provides a quick overview of the various criteria that can be used to
evaluate mathematical models in the task allocation problem in a dynamic IT environment. Each
criterion plays a key role in deciding on the choice and application of a model in real-world
conditions, where not only theoretical efficiency but also practical suitability is important.

Scheduler Task Pool Workers Resources (CPU, Memory)

Initialize tasks (priority, duration, resources) =
>

Initialize workers

Y

Initialize resource load

Choose strategy (MDP / Multi-agent approach)

Assign tasks to workers based on strategy

Assign resources to tasks

Y

Evaluate reward (SLA violation, efficiency)

i

Adjust strategy (reinforcement learning / integer programming)

.

Update task-worker assignments

Y

Update system state (task distribution, resource load)

[Repeat steps 2-4)
Re-evaluate strategy and task assignment

it

Update workers' tasks

Recalculate resource usage

Scheduler Task Pool Workers Resources (CPU, Memory)

Figure 1. Task Distribution and Strategy Evaluation Algorithm
Note — compiled by the authors based on the main task-related objects.

Table 1. Criteria for evaluating task distribution models in a dynamic environment

Criterion Description Significance
Accuracy Measures how close the found | Important for assessing the effectiveness
optimization solution is to the theoretically | of models in solving optimization

optimal one.

problems with constraints.

Time execution

Estimation of the duration of
the problem-solving process
for different sizes of input data.

Key criterion for tasks with real-time
requirements.

Resilience to
change in a

The ability of the model to

adapt to changes in task

Important for systems with frequent
changes in conditions.

dynamic parameters and changes in

environment operating conditions.

Flexibility =~ and | The ability of the model to | Essential for working in environments
scalability work with different problem | with changing requirements or large

scales and adapt to different
conditions.

volumes of data.

Solution quality
when input data
changes

Assessing the stability of a
model's solution when input
data such as cost or load
change.

Important for ensuring stability and
reliability of decisions in conditions of
uncertainty.




1-Tom, 3-HeMmip, KbIpKyitek, 2025.

Tom 1, Ne 3, centsa6ps 2025.

-189 -

Vol.1, No.3, September 2025.

. Cepik6aes aTbiHA, WKTY
BecTHnk BKTY nm. [l. Cepnk6aesa /
D. Serikbayev EKTU Bulletin

End of table 1

Criterion

Description

Significance

Used resources

Consumption of computing
resources (memory, CPU time,
etc.) by the model.

Assessing the efficiency of resource
use, especially in conditions of limited
capacity.

Sensitivity to
initial conditions

The influence of changes in
initial conditions on the final
solution.

Helps to assess the stability of the
model and its ability to cope with data
variations.

Explainability
and transparency
solutions

The ability to explain how the
model came to its decision and
understand its logic.

Key to trust in the system and to correct
possible errors.

Security qualities

The ability of the model to

Important to meet service standards

service level | meet service level agreements | and ensure required quality.
agreement (SLA) | (e.g. response time).

Simplicity Ease of integration of the | Assessing the  complexity  of
implementations | model into an existing IT | implementing the model in an

system and its adaptation to | industrial environment.

real-world conditions.

Note — compiled by the author based on personal analysis and interpretation.

If we apply these parameters in the context of your current project (for example, the task
of assigning tasks between performers), we can use the table to compare different algorithms in
more detail:

The input data for solving the task of optimal assignment of tasks to workers includes the
following parameters:

1. Number of tasks (n_tasks) — the total number of tasks that need to be assigned to
available workers.

2. Number of workers (n_workers) — the total number of workers available to perform
the tasks.

3. Cost matrix (cost matrix) — a matrix representing the cost of assigning each task to a
specific worker. The matrix has dimensions (n_tasks x n_workers), where each element
represents the cost of assigning a particular task to a specific worker.

For example, if the number of tasks is 10 and the number of workers is 5, the following cost
matrix might be generated:

47 13 97 79 83]
34 89 26 74 31
56 43 29 8 69
34 13 60 98 44
48 65 81 17 T4
81 54 74 90 37
98 66 40 95 76
35 58 94 91 73
8 75 42 14 93
|89 6 8 59 28]

cost =

Figure 2. Cost matrix
Note — compiled by the author

The values in this matrix define the cost of assigning each task to a specific worker. For
instance, the first worker would complete the first task at a cost of 47 units, the second worker at
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a cost of 13 units, and so on. This matrix serves as the basis for solving the optimal assignment
task using various algorithms.

For each optimization algorithm (including linear programming, greedy algorithms, and
random methods), this data is used to compute performance metrics such as:

Execution time — the time taken to solve the task.

Cost — the total cost of the solution compared to other methods.

Iterations (for iterative algorithms) — the number of steps required to reach a solution.

Memory — the amount of memory used to solve the task.

Standard deviation of task distribution — a measure of the spread of task assignments among
workers, indicating the balance of the assignment.

Deviation from the optimal solution — the difference between the found solution and the
theoretically optimal solution to the task.

Using these data points in combination with different algorithms allows for a comparative
analysis of the solution methods based on the specified criteria.

MDP:
Execution Time: 0.0003 seconds
Total Cost: 503.6
Memory Usage: 108.77 MB

Integer Programming:
Execution Time: 0.0925 seconds
Total Cost: 305.0
Memory Usage: 110.30 MB

Multiagent:
Execution Time: 0.000@ seconds
Total Cost: 443
Memory Usage: 110.30 MB

Scheduling:
Execution Time: 0.0003 seconds
Total Cost: 14.0
Memory Usage: 110.34 MB

Assignment:
Execution Time: 0.0003 seconds
Total Cost: 113.0
Memory Usage: 110.38 MB

Figure 3. Comparative Analysis of Solution Methods
Note — based on experimental results obtained by the author

The results (Fig.1) of the comparison between five optimization models — MDP (Markov
Decision Process), Integer Programming, Multiagent, Scheduling, and Assignment — based on
execution time, total cost, and memory usage are as follows:

1. Execution Time: The Multiagent and Scheduling models demonstrate the shortest
execution time (0.0000 seconds), indicating high computational efficiency. The MDP and
Assignment models also show fast execution times (0.0003 seconds), while Integer Programming
exhibits the longest execution time (0.0925 seconds), reflecting its higher computational
complexity.

2. Total Cost: The Scheduling model achieves the lowest total cost (14.0), making it the
most cost-effective solution. The Integer Programming model provides a competitive cost (305.0),
presenting a viable alternative for optimization. The MDP model incurs a higher cost (503.6),
while the Assignment model results in a total cost of 113.0. The Multiagent model, although
efficient in execution time, results in a higher total cost (443).

3. Memory Usage: Memory usage across all models is relatively consistent. The MDP
model uses 108.77 MB, while the other models (Integer Programming, Multiagent, Scheduling,
and Assignment) use between 110.30 MB and 110.38 MB.
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CONCLUSION

The models analyzed in this study are especially relevant for solving dynamic and
evolving optimization problems, which are commonly encountered in real-world applications
such as resource allocation, scheduling, and decision-making in uncertain environments. Tasks
with dynamic characteristics, such as those found in multi-agent systems, require continuous
adaptation to changing conditions, making the choice of optimization model critical.

In dynamic environments, where parameters and conditions fluctuate over time, the
Markov Decision Process (MDP) model proves particularly useful due to its ability to model
sequential decision-making and account for future uncertainties. Similarly, multi-agent systems
are well-suited for dynamic scenarios, as they allow for the decentralized coordination of agents
that can independently respond to changes in the environment.

Integer Programming and Scheduling models, while more static in nature, can still be
applied effectively when the dynamics of the task are well-defined or can be discretized, though
they may require more computation to account for the real-time changes.

From the obtained results, we observe the following: the MDP model demonstrated the
fastest execution time of 0.0003 seconds with a total cost of 503.6, but its memory usage was
relatively high at 108.77 MB. The Integer Programming model, while taking slightly longer with
an execution time of 0.0925 seconds, provided the lowest total cost of 305.0 and used 110.30 MB
of memory. The Multiagent model exhibited a very low execution time of 0.0000 seconds, with a
total cost of 443 and a memory usage of 110.30 MB, making it highly efficient in terms of time but
less cost-effective. The Scheduling model had an execution time of 0.0003 seconds and a very low
cost of 14.0, with minimal memory usage of 110.34 MB. The Assignment model had an execution
time of 0.0003 seconds, with a total cost of 113.0 and a memory usage of 110.28 MB, demonstrating
fast processing with moderate cost.

These findings underscore the importance of choosing an appropriate optimization model
based on the dynamic nature of the task, where computational efficiency, adaptability to changes,
and accuracy in solution quality are key factors to consider. The comparative analysis provides a
valuable framework for selecting the best-suited model in the context of dynamic optimization
problems, ensuring more efficient decision-making in complex, changing environments.

The results of this study demonstrate the effectiveness of various optimization models —
MDP, Integer Programming, Multi-agent Systems, Scheduling, and Assignment — in solving
dynamic, task-assignment problems. Despite their varying execution times and cost
efficiencies, all models successfully addressed the problem within acceptable computational
limits. Future research should focus on enhancing the scalability and adaptability of these
models in real-time dynamic environments, incorporating machine learning techniques for
better decision-making under uncertainty, and evaluating the robustness of these models when
applied to larger-scale, complex scenarios. These advancements could significantly improve
the practical applicability of these models in fields such as autonomous systems, supply chain
management, and robotics.
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