«BECTHUK BKTVY» 190 Ne 1, 2024

TEXHWYECKME HAYKH @
Y TEXHOJIOTHH

AKMAPATTbIK-KOMMYHUKALUMANBIK TEXHOJIOMMANAP
NHOOPMALIMOHHBIE N KOMMYHUKALIMOHHBIE TEXHOJTOI N
INFORMATION AND COMMUNICATION TECHNOLOGIES

DOI 10.51885/1561-4212_2024_1_190
MPHTW 20.01.07

K. Maksutova?, N. Saparkhojayev?, Dusmat Zhamangarin®

IL.N. Gumilyov Eurasian National University, Astana, Kazakhstan

E-mail: qunkabai@gmail.com*

2D. Serikbayev East Kazakhstan technical university, Ust-Kamenogorsk, Kazakhstan
E-mail: n.saparkhojayev@sci.gov.kz

SKazakh Technology and business University, Astana, Kazakhstan

E-mail: Dus_man89@mail.ru

DEVELOPMENT OF AN ONTOLOGICAL MODEL OF DEEP
LEARNING NEURAL NETWORKS

TEPEH OKbITYObIH HEAPOHObIK XXEJNINEPIHIH MATEMATUKATIbIK MOOENIHIH
AIITOPUTMIH XXACAY. OHTOJNOIMANbIK MOAENLAI ©3IPNEY

_ PA3PABOTKA ANITOPUTMA
MATEMATUYECKOW MOJENN HENPOHHbIX CETEW rMYBOKOrO OBYYEHWSI.
PA3PABOTKA OHTONOMMYECKOW MOJENM

Abstract. This research paper examines the challenges and prospects associated with the integration
of artificial neural networks and knowledge bases. The focus is on leveraging this integration to address
practical problems. The paper explores the development, training, and integration of artificial neural net-
works, emphasizing their adaptation to knowledge bases. This adaptation involves processes such as in-
tegration, communication, representation of ontological structures, and interpretation by the knowledge
base of the artificial neural network's representation through input and output.

The paper also delves into the direction of establishing an intellectual environment conducive to the
development, training, and integration of adapted artificial neural networks with knowledge bases. The
knowledge base embedded in an artificial neural network is constructed using a homogeneous semantic
network, and knowledge processing employs a multi-agent approach.

The representation of artificial neural networks and their specifications within a unified semantic model
of knowledge representation is detailed, encompassing text-based specifications in the language of
knowledge representation with theoretical semantics. The models shared with the knowledge base include
dynamic and other types that vary in their capabilities for knowledge representation.

Furthermore, the paper conducts an analysis of approaches to creating artificial neural networks across
various libraries of the high-level programming language Python. It explores techniques for developing arti-
ficial neural networks within the Python development environment, investigating the key features and func-
tions of these libraries. A comparative analysis of neural networks created in object-oriented programming
languages is provided, along with the development of an ontological model for deep learning neural net-
works.

Keywords: model, neuron, mathematics, neural networks, knowledge bases, ontological model.

AHOamna. byn makanada xacaHObl HeUpOHObIK xeninepdi 6iniM KopbIMeH UHMezpayusinay
Mmacenernepi meH barbimmapbl cunammarnfaH. KondaHbanbl ecenmepdi weuwy ywiH 6iniM 6a3acbl MeH
JKacaHObl HelpOHObIK XeniHiH uHmeapayusicbiH natdanaHy YWwiH xacaHObl HelUpPOHObIK XeriHi a3iprey,
OKbIMy XoHe UHMmeepauyusnay uHmeepauyus, balnnaHbiC, OHMOMO2USNIbIK KYPbilbIMObl YCbIHY X8He
)KacaHObl HeUPOHObIK XerliHiH Kipici MeH WhbIFbIChbl apKbiibl XacaHObl HeUPOHObIK XeniHiH KOpiHICiH 6inim

mailto:qunkabai@gmail.com
mailto:Dus_man89@mail.ru

Ne 1, 2024 191 «IKTY XABAPIIBICBI»

6asacbiHbiH UHMeprpemayusicbl apkblibl b6iniM 6asacbiHa 6eliimOenedi. belimOenseH xacaHObl
HelpoHObIK xeninepdi binim KopbiMeH 0ambimy, OKbimy xaHe bipikmipy ywiH Hmesnnekmyandbl opmaHbl
Kypy barbimbl Kapacmbipbinadbl. XKacaHObl HeUpOHObIK xenige eHaisineeH 6inim 6asacbl bipmexkmi
cemaHmMuKarblK xersi HeeidiHoe Kypblnadb! xoHe oHOarbl 6iniMOi eHOey MyrnbmuazeHmmik macin apKbiribl
XKy3eee acbipbinnadbl. XKacaHObl HelpOoHObIK xerinepdi YcbiHyOblH OHMOI02USIIbIK MOOENi XoHe oapObiH
crieyugpukayusicol 6inimoi ycbiHyObIH bipbiHFali ceMaHmukasbik MoOeniHOe ycbiHblnfFaH, on binimoi ycbiHy
miniHdeai MemiHOiKk mypdeai xacaHObl HeUPOHObIK XxeninepdiH creyugukayusiCbiH MeopusiibIK
cemaHmukameH xoHe Oinim 6asacbiHa opmak MooesibOepMeH, OUuHaMuKasblK XeHe 6iniMoi ycbiHy
MyMKiHOIKmepimeH epekweneHemiH 6acka myprnepmeH KammuOlbl. byn xymbicma Python xofapbl
OeHeelini 6ardapnamanay MiniHiH apmypni KimanxaHanapelH0a xacaHObl HelpoHObIK xeninepoi Kypy
macindepiHe manday xacandbl; Python o3sipney opmacbiH0a »xacaHObl HeUPOHObIK xeninepdi Kypy
macindepi Kapacmbipbinadsl. Ocbl KimanxaHanapOblH Heai3ai epekwernikmepi MeH yHKyusnapbl
3epmmenedi. Obbvekmize b6arbimmarraH b6ardapramanay mindepi mypfbiCbiHaH XacasiFaH HeUpPOHObIK
Xeninepee canbicmbipMansl manday acanalbl. TepeH OKbimyOblH HEUPOHObIK XXesinepiHiH
OHMoOJI02USINbIK MOOeri Xacasobl.

TyutiH ce3dep: moOenb, HeEUPOH, Mamemamuka, HelUpoHObIK Xeninep, 6iniM 6a3anapel,
OHMOJI02USINbIK MOOE/Ib.

AHHOMauus. B daHHOU cmambe paccmampusearomcsi mpyOHOCMU U HarpasreHus udmezpayuu uc-
KYyCCMBEeHHbIX HelipoHHbIX cemel ¢ 6asamu 3HaHul. [ns peweHusi rpuknadHbix 3adady ucrnosib3yemcsi
uHmeezpauyus 6a3bl 3HaHUl U UCKyccmeeHHOU HelpoHHOU cemu, rpu amom pa3pabomka, oby4yeHue u UH-
meepayusi uckyccmeeHHoU HelpoHHOU cemu adanmupytomcs K 6a3e 3HaHul Yepe3 UHmMezpayuio, Ces3b,
npedcmassieHUe OHMOJI02UYECKOU CMPYKMypbl U UHMeprnpemauuto npedcmasnieHus UCKYyCCMeeHHOU
HelpOoHHOU cemu 4Yepe3 8x00HbIe U 8biXOOHbIe OaHHble. Paccmampugsaemcs co3daHue uHmennekmyarb-
HoUll cpeldbi 0na paspabomku, obyvyeHuUss u uHmMeapayuu adarnmupo8aHHbIX UCKYCCMBEHHbIX HEUPOHHbIX
cemel ¢ 6azamu 3HaHull.

ba3sa 3HaHul, 8CMpoeHHasi 8 UCKYyCCMBEHHYH HEUPOHHY Cemb, OCHO8bigaemcsi Ha 0OHOPOOHOU ce-
MaHmuyeckol cemu, a obpabomka 3HaHull 8 Heli OCywecmesiaemcs ¢ UCMob308aHUeM My/ibmuazeHm-
Hozo rnodxolda. [MpedcmasneHa oHMonoau4yeckasi MoOeslb UCKYCCMBEHHbIX HEUPOHHbIX cemell U ux cre-
yucbukayuu 8 eduHol cemaHmu4eckol mModenu npedcmasneHus 3HaHUl. Oma mModesnb 8K4Yyaem crie-
yughuKayur UCKYyCCmMBEHHbIX HEUPOHHbIX cemeli 8 MEKCMOo8OM 8Ude Ha si3biKe rnpedcmassieHuUs1 3HaHul ¢
meopemuyeckoli cemaHmukoul u modensamu, obwumu Onsi 6a3bl 3HaHUl, OuHamuyeckol u Opyaux murios,
pasnuyarowuxcs o 803MOXHOCMAM npedcmaseHusi 3HaHUU.

B pabome nposedeH aHanu3 nodxodo8 K co30aHU0 UCKYCCMBEHHbIX HEUPOHHbIX cemel 8 pas3uyHbIX
bubnuomekax s3bika npospammuposaHusi Python; paccmompeHbl MemoObl co30aHuUsl UCKYCCMBEHHbIX
HelipoHHbIX cemeli 8 cpede paspabomku Python. WccrnedoeaHbl OCHOBHble 0COBeHHOCMU U (hyHKUUU
amux 6ubnuomex. lMpedcmasneH cpagHUMesbHbIU aHanu3 HelpOHHbIX cemel, Co30aHHbIX 8 MepPMUHax
06BLEKMHO-0PUEHMUPOBaHHbLIX S3bIKO8 po2paMmMuposaHusi. PaspabomaHa oHmornozudeckas Modoesib
HelpOoHHbIX cemel aryboKko20 0by4eHUs.

Knrodeenle cnoea: modesnib, HEUPOH, MamemMamuka, HelipoHHble cemu, 6a3bl 3HaHUl, OHmMosoauye-
cKasi MoOerib.

Introduction. In 1943, W. McCulloch, an American scientist, and his student Walter Pitts
formulated the inaugural mathematical representation of a neuron, the fundamental unit of the
brain. Their work also established a foundational theory about brain functioning. Their impact
can be summarized in three main areas:

1. They developed a foundational neuron model, acting as the basic processing unit. This
model calculated the transition function by assessing the scalar product of the input signal vec-
tor and the vector of weight coefficients.

2. They introduced a network structure incorporating these neurons, enabling the execution
of both logical and arithmetic operations.

3. Their fundamental assertion was that these networks had the capacity to learn, recognize
patterns, and generalize acquired information.

In the realm of artificial intelligence (Al) and machine learning, the evolution of deep learn-
ing neural networks stands as a cornerstone of innovation. These intricate systems, inspired by
the biological structure of the human brain, have demonstrated remarkable capabilities in tasks

«BECTHUK BKTVY» 192 Ne 1, 2024

ranging from image recognition and natural language processing to autonomous driving and
medical diagnosis. However, as deep learning continues to proliferate across diverse domains,
the need for a systematic and comprehensive understanding of its underlying principles becomes
increasingly paramount.

The development of an ontological model of deep learning neural networks emerges as a
pivotal endeavor in addressing this imperative. By structuring and formalizing the knowledge
inherent in these complex systems, an ontological model provides a unified framework for con-
ceptualizing, organizing, and navigating the multifaceted landscape of deep learning. This en-
deavor transcends mere documentation; it embodies a systematic approach to elucidating the in-
tricate relationships among the myriad components, architectures, algorithms, and methodolo-
gies that constitute deep learning neural networks.

The relevance of such a venture permeates multiple dimensions of contemporary scientific
and technological discourse. Firstly, within the academic sphere, an ontological model serves as
a catalyst for interdisciplinary integration, fostering collaboration among researchers from di-
verse domains such as computer science, mathematics, neuroscience, and cognitive science. It
provides a common language and conceptual scaffold upon which disparate strands of
knowledge can converge, thereby facilitating synergistic advancements in understanding and
innovation.

Moreover, in practical applications, the utility of an ontological model extends far beyond
academia, permeating industries and sectors where deep learning neural networks play a pivotal
role. From healthcare and finance to autonomous vehicles and natural language processing, the
adoption of deep learning technologies continues to proliferate, driving transformative shifts in
how we perceive and interact with the world. Within these domains, an ontological model
serves as a roadmap, guiding practitioners in the design, deployment, and interpretation of deep
learning systems, thereby fostering transparency, interpretability, and trust.

Furthermore, as the pace of technological advancement accelerates, the imperative for stand-
ardized terminologies and methodologies becomes increasingly salient. An ontological model
not only addresses this need but also catalyzes the dissemination of knowledge and best practic-
es, thereby fostering a virtuous cycle of innovation and progress.

In light of these considerations, the development of an ontological model of deep learning
neural networks emerges not merely as an academic pursuit, but as a foundational pillar upon
which the edifice of contemporary Al is erected. It embodies a convergence of theoretical in-
quiry and practical application, of disciplinary rigor and interdisciplinary synthesis, of inno-
vation and responsibility. As we embark on this journey of knowledge construction and explo-
ration, we are poised to unravel the mysteries of deep learning neural networks, unlocking new
frontiers of understanding and ushering in a future shaped by the transformative power of Al.

Literature Review. In recent years, the field of neural networks has undergone significant ad-
vancements, yet many principles articulated by McCulloch remain valid. Despite the diverse
range of neuron models available, the fundamental operating principle introduced by McCulloch
and Pitts remains unchanged. However, a drawback of McCulloch's model is its reliance on the
threshold form of neuron activation function, which limits its flexibility in training and adapting
the neural network for different tasks [1].

American neurophysiologist Francis Rosenblatt advanced neural network theory in 1958 by
extending McCulloch and Pitts' models. Rosenblatt introduced the "Perceptron,” a self-learning
neural network with modified connections. Initially featuring a single-layer structure with strict
threshold functions and binary or multilevel inputs, the perceptron underwent significant en-
hancements over time.

In 1982, American biophysicist John Hopfield proposed the Hopfield network, a neural net-

Ne 1, 2024 193 «IKTY XABAPIIBICBI»

work model incorporating feedback loops between layers to improve generalization properties.
This model found extensive application in pattern recognition. Following this, various efficient
neural network algorithms and architectures emerged, including backpropagation networks, bi-
directional associative memory, and self-organizing maps.

The practical application of neural networks became viable with the rise in computing pow-
er, facilitating the widespread use of programs employing neural network principles. Construct-
ing neural networks requires substantial computational resources, given the iterative nature of
network training. These networks consist of interconnected nodes with variable weights that ac-
quire knowledge through weight adjustments based on exposed samples. Neurons are linked
through network connections, with weights providing instructions in the input signal. Each neu-
ron has its activation level, influencing other neurons and contributing to the overall neural pro-
cess. To enhance neural processing efficiency, large-scale computers are employed, enabling
faster development of computational tasks compared to traditional systems.

In the past three years, there has been a surge in the popularity of deep learning-based meth-
ods for process prediction, resulting in significant breakthroughs (Verenich et al., 2019). Nota-
bly, pioneering publications on this subject (Evermann et al., 2017; Tax et al., 2017) have
amassed over 100 citations, as reported by Google Scholar. Deep learning, characterized by its
hierarchical structure of artificial neurons, eliminates the reliance on handcrafted features. This
architecture enables artificial neural networks to autonomously learn intricate features, thereby
reducing the need for algorithm customization across a diverse range of prediction problems.
Moreover, the learned feature representation is not confined by human imagination and can ex-
hibit arbitrary complexity. Additionally, the computational demands and achievable perfor-
mance of deep learning scale linearly with available data, presenting a contrast to standard pro-
cess discovery algorithms burdened by quadratic or even exponential runtime requirements
(Augusto et al., 2018).

Despite the commonality in the overarching concept of deep learning, the practical imple-
mentations for process prediction exhibit fundamental diversity. Variations exist in data prepro-
cessing, the adoption of distinct network architectures, and the pursuit of different objectives
such as outcome prediction, time prediction, and control-flow prediction. Furthermore, there is
divergence in the sets of log data, evaluation metrics, and baselines used, rendering the results
often incomparable. To address this challenge, this paper aims to provide a comprehensive
overview of deep learning-based predictive process monitoring approaches, shedding light on
the trade-offs among these varied approaches. The contributions of this work are threefold:

A systematic literature review (SLR) is undertaken to construct a comprehensive presenta-
tion of existing deep learning-based predictive process monitoring approaches.

The identified literature is systematically classified based on selected criteria to extract the
main contributions of each approach.

Conflicting statements and research gaps are highlighted to stimulate further research in this
domain.

Materials and methods of research. A deep neural network (DNN) is an artificial neural
network with a large number of layers between the input and output layers; each neuron is con-
nected to all neurons in the next layer. One or more layers between the input and output layers
are called hidden layers.

Every link between a neuron in a given layer and a neuron in the preceding layer is assigned
a weight, denoted as "w," representing the sensitivity of the current neuron's activation to the ac-
tivation of neurons in the previous layer. Additionally, each neuron in the layer possesses a bias,
referred to as "b". If you're familiar with linear regression, the bias term acts as the "c" intercept
for y = mx + c. If the sum (mx) does not exceed the threshold, but the neuron must be activated,

«BECTHUK BKTVY» 194 Ne 1, 2024

then the predisposition is corrected so that the threshold of this neuron is lowered to activate it

[5].

Hidden layers

O

Output layer

WTRNRETON
S 4’;’9‘5‘% K] 1 NXS

X, 7 “§" g é ‘; é» Va2
3 O ¥ .

/?’X% SO 2 KN
%\ N N

Y

”

Error backpropagation

Figure 1. Deep neural network

The whole network seems very complex, doesn't it? But it's not - think of it as a big function
y = f(x), where x is the input and y is the output. Then, inside the f(x) function, a number of
functions are called, and the output of one function is passed to another. These internal func-
tions are nothing but hidden layers.

The first method uses specially selected data to obtain the desired result. This method is
quite laborious, since the data must be collected manually. However, this method is useful for
classification and regression. The second method, on the other hand, does not use predefined
answers or algorithms. Its purpose is to reveal hidden patterns in the data. This method is com-
monly used for associative tasks such as clustering or grouping shoppers based on their behav-
ior. "Together with this choose" is one of the types of associative tasks of the Amazon company
[6].

Derived from the fundamental idea of a neuron's structure, various mathematical representa-
tions of neurons can be constructed. Figure 2 illustrates the prevalent model, wherein the sum-
mation function, termed as such, amalgamates all input signals (Xi) originating from the neu-
ron's senders. This summation yields a weighted sum, with the weights (wi) denoting the synap-
tic strengths. Positive weights are associated with excitatory synapses, whereas negative weights
correspond to inhibitory synapses.

The proposed approach relies on employing a knowledge base that corresponds to a unified
model designed for representing semantic knowledge. This model utilizes homogeneous seman-
tic networks, specifically those based on the semantic interpretation of basic set theory. This in-
terpretation relies on the membership relation between an element and a set, represented by an
arc scale. The languages associated with a unified model for semantic knowledge representation

Ne 1, 2024 195 «IKTY XABAPIIBICBI»

are referred to as sc-languages, with their texts composed of sc-elements. Additionally, sets,
structures, ontological representations, and ontological models formed based on sc-languages
are termed sc-sets, sc-structures, and sc-models, respectively.

Input
X W,
X, \ output

I .
X
X
activation function
summing function ¥
f=tw-x+8

Figure 2. A simple mathematical model of a neuron

Several software systems have been developed for training artificial neural networks. The
most widely used are Caffe, Theano, TensorFlow, Torch and CNTK. The Caffe library was the
first deep learning system created; it was developed at the Berkeley Center for Vision and
Learning and, as of 2014, Caffe contains the largest number of completed and trained models.
Theano system was developed at the University of Montreal in Canada. Theano was developed
in Python, but Python programs can TensorFlow was created by Google in 2015 and includes a
system for efficient processing of tensors and graph flow The Torch library was developed in
Lua and provides an easy-to-use high-level environment for creating MATLAB machine learn-
ing programs; like Theano, it integrates with the C language for high performance. Torch devel-
opers chose Lua over Python because of the ease of integration between C and Lua. In this re-
gard, Microsoft developed CNTK (Cognitive Toolkit) and published its source code in 2016 [7].

Keras: An open source neural network library written in Python, Keras runs on top of open
source machine learning libraries such as TensorFlow and Theano The Keras API is divided in-
to three main categories: Models, Layers and Modules They can be divided into the following
categories. Unlike the previously described libraries, Keras works with objects without going in-
to the details of creating a mathematical model. For example, to create a convolutional neural
network: model = Sequential() model.add(Conv2D(64, kernel size=3, activation="relu’, in-
put_shape=(28,28,1)) model.add(Flatten()) model. add(Dense(10, activation="'softmax’)) mod-
el.compile(optimiser="adam’, loss='categorical_crossentropy', metrics=['accuracy’]) commands:
hist = model.fit(x_train, y_train, validation_data = (x_test, y_test), epochs=1 [8].

Starting a new project. To start a new Python 3 project in Anaconda, you need to select the
following menu item — File New Python 3 Notebook

«BECTHUK BKTVY» 196 Ne 1, 2024

;~ JUpy[er Untitled1 wswa changes " Logout
| File l t Viow nsert]
[Nw. Notebook]' I Python 3 v » | Coode ¢l =
Open

Make a Copy
Save as.,
Rename,

Save and Checkpaint

Figure 3. Starting a new project in Python 3

A new empty project should appear on the screen, as shown in Figure 4 below.

f' Jupyter Untitled3 Lest Checkpoint: 07/192018 {unsaved changas) &

He Tusted #

H

B ¢+ ¥ @O0 4 3 NRun B C M Code

Figure 4. Starting a new project in. Python 3

Rename the project to DeepLearningDigitRecognition by clicking and editing the default
name 'UntitledXX'.

Typically, numpy is used for processing arrays and matplotlib for plotting. These libraries
were imported into the project using the following import procedure: Since Tensorflow and
Keras are constantly updated, if you do not synchronize their respective versions in the project,
you will receive many warning errors in the process [9]. This can be distracting from learning,
S0 in this project we will suppress all warnings. This is done with the following lines

disable all warnings

import OS

os.environ[TF_CPP_MIN_LOG_LEVEL]="3
import alerts

filterwarnings(ignore’)

from tensorflow.python. import utilities.
deprecation._PRINT_DEPRECATION_WARNINGS
False

Figure 5. Line of code about errors and warnings
The Keras library is used to import datasets. This uses mnist, a dataset for handwritten digits.

The necessary packages are imported using the following instructions - from keras.datasets import
mnist. The details presented in the section titled "Materials and Research Methods (table 1).

Ne 1, 2024

197 «IKTY XABAPIIBICBI»

Table 1. Materials and Research Methods

Research Methods

Description

Deep Neural Net-
work (DNN) Over-
view

DNN is an artificial neural network with multiple layers (hidden lay-
ers) between the input and output layers.

Neurons in each layer are connected to all neurons in the next layer.
Weights (w) are assigned to each connection, representing sensitivity
to activation in the preceding layer.

Each neuron has a bias (b), acting like the intercept in linear regres-
sion.

The bias is adjusted to activate neurons if the sum of inputs does not
exceed a threshold.

Simplicity of the

Despite its apparent complexity, the DNN is described as a big func-

Network: tion (y = f(x)) with internal functions (hidden layers).
Internal functions represent the processing that occurs within the
network.

Methods of Data Two methods discussed for obtaining desired results:

Usage: First method involves using specially selected data, useful for classi-
fication and regression, but laborious.
Second method, not using predefined answers or algorithms, focuses
on revealing hidden patterns, often used for associative tasks like
clustering.

Neuron Mathematical representations of neurons are derived from the funda-

Mathematical
Representations:

mental idea of a neuron's structure.
Figure 2 illustrates a prevalent model with a summation function,
weights, and positive/negative associations.

Semantic Knowledge
Representation:

The proposed approach involves a knowledge base with a unified
model for representing semantic knowledge.

It uses homogeneous semantic networks based on the semantic inter-
pretation of basic set theory.

sc-languages, sc-elements, sc-sets, sc-structures, and sc-models are
key terminologies.

Software Systems for
Training Neural
Networks:

everal software systems mentioned, including Caffe, Theano, Ten-
sorFlow, Torch, and CNTK.
Brief descriptions of each system and their origins provided.

Keras Overview:

Keras, an open-source neural network library written in Python, runs
on TensorFlow and Theano.

Keras API is divided into three categories: Models, Layers, and
Modules.

Unlike other libraries, Keras focuses on working with objects without
delving into the mathematical model details.

An example of creating a convolutional neural network using Keras
is provided.

Starting a New Pro-
ject in Anaconda:

Instructions for starting a new Python 3 project in Anaconda are giv-
en, involving selecting the menu item "File New Python 3 Note-
book."

«BECTHUK BKTVY» 198 Ne 1, 2024

This section provides a comprehensive overview of the deep neural network, its mathemati-
cal representation, methods of data usage, semantic knowledge representation, popular software
systems for training, and an introduction to Keras.

Results and discussion. A deep learning neural network is defined using the Keras package -
the Sequential, Dense, Dropout and Activation packages are imported to define the network ar-
chitecture. load_model package for saving and exporting the model; np_utils is also used for
some utilities required by the project [7]. This introduction is done with the help of the follow-
ing project instructions.

from keras. models are imported sequentially, ioad model
from keras. layers main import dense dropout, activation
from keras. utilities import pr_utils

Figure 6. Import execution

When you run this code, you will see a console message saying that Keras is using Tensor-
Flow in the back end. A screenshot of this stage can be seen in Figure 7.

14 # keras imports

] from keras.datasets import mnist
from keras.models import Sequential, load_model
from keras.layers.core import Dense, Dropout, Activation
from keras.utils import np_ utils

Using TensorFlow backend.

Figure 7. Running the code

To define a deep learning network architecture, a neural network model will consist of a lin-
ear stack of layers. To define such a model, you need to call a sequential function:

L model =Serail ()

Figure 8. Sequential Function Code Line

The input level is determined, which is the first level in the network, the following step-by-
step program instruction is used:

model.add(Dense(512, input_shape=(784,)))

Figure 9. Line of code defining the input level

Ne 1, 2024 199 «IKTY XABAPIIBICBI»

Input Vector
784 Pixels Layer 1
512 Nodes

Figure 10. Layer with neurons and input nodes

This creates a 512 node layer (neurons) with 784 input nodes. This can be seen in Figure 10.
If you notice that all input nodes are fully connected to layer 1, that is, each input node is con-
nected to all 512 nodes of layer 1.

Next, we need to add an activation function to the output of layer 1. We will use ReLU as the
activation function. The activation function is added with the following programming com-
mand.

model.add(Activation(‘relu’))

Figure 11. Activation function

Then we add a 20% dropout using the step-by-step instructions in Figure 12. Dropout is a
technique used to prevent the model from overfitting.

model. add(dropout(0.2))

Figure 12. Dropout method

At this stage, the initial level is completely set. Next, a hidden layer is added. The hidden
layer consists of 512 nodes. The input to the hidden layer comes from a previously defined input
layer. All nodes are fully connected, as in the previous case. The output of the hidden layer is
sent to subsequent layers of the network, namely the final and output layers. Uses the same
ReLU activation as the previous layer, downgraded by 20%. The code for adding this layer is
shown below.

«BECTHUK BKTVY» 200 Ne 1, 2024

model.add(dense(512))
model.add(Activation('relu’))
model. add(dropout(0.2))

Figure 13. Code for adding a layer

The ontological model of the neural network will look like this:

Input Vector
784 Pixels Layer 1 Layer 2
512 Nodes 512 Nodes

Figure 14. Visualized ontological model of the neural network

Then the last layer is added to this network - the output layer. Note that any number of hid-
den layers can be added using the same code used here. However, there are some advantages
here, as in many cases, but not all, you will get better results.

Conclusion. Since the inception of neural networks, significant transformations have oc-
curred in both their architecture and learning methodologies. Presently, two predominant archi-
tectures hold sway: convolutional networks, effectively applied in computer vision tasks, and
recurrent networks, actively employed in addressing natural language processing challenges. In
the early stages, convolutional networks underwent training through a blend of supervised and
unsupervised learning, utilizing automatic encoders and deep belief networks. Modern ap-
proaches like residual learning streamline the process by exclusively employing supervised
learning, eliminating the need for pre-learning and enhancing the efficiency of learning.

An influential development in convolutional neural networks involves transfer learning,
where a network trained on one dataset is adapted to tackle problems in another domain. This
entails refining and retraining the network on the target problem's data, reducing training time
and broadening the applicability of the trained neural network. Furthermore, the integration of
convolutional and recurrent neural networks with reinforcement learning holds promise as a
compelling avenue for exploration.

Keras provides a high-level API for building artificial neural networks. In this tutorial, you
will learn how to create an artificial neural network trained to find numbers in handwritten text.
A layered network has been created for this purpose, and Keras allows you to specify your pre-
ferred activation function at each layer. The network was trained on training data using gradient

Ne 1, 2024 201 «IKTY XABAPIIBICBI»

descent. The accuracy of the trained network in predicting unseen data was tested on test data.
You will learn how to create metrics for precision and error. Once the network is fully trained,
you save the network model for later use. The ontological model of the neural network, visual-
ized in Figure 14, illustrated the structured connectivity between layers. The culmination in-
volved the addition of the last layer - the output layer, providing flexibility for the integration of
any number of hidden layers with potential advantages leading to improved results in certain
cases. Overall, this research lays the groundwork for the effective application of deep learning
neural networks in various applications.

The development of ontological models in the realm of deep learning neural networks repre-
sents a paradigm shift in knowledge representation and computational understanding. From
foundational concepts to practical implementations, the journey has been marked by continuous
innovation. As the field advances, the interplay between ontological models and deep learning
algorithms is poised to shape the future of artificial intelligence, making systems more interpret-
able, transparent, and adaptable to a wide array of applications.

References

1. Kruglov, V.V. Iskusstvennye nejronnye seti. Teorija i praktika / V.V. Kruglov, V.V. Borisov. — M.:
Gorjachaja linija — Telekom, 2019. — 382 c.

2. “STIPCompassTaxonomies.pdf.” Accessed: May 27, 2022. [Online]. Available:
https://stip.oecd.org/assets/downloads/STIPCompassTaxonomies.pdf

3. E.P. Office, “PATSTAT. Worldwide Patent Statistical Database.” https://www.epo.org/searching-for-
patents/business/patstat.html (accessed Mar. 14, 2022).

4. “Database - Eurostat.” https://ec.europa.eu/eurostat/data/database (accessed Mar. 14, 2022).

5. “European innovation scoreboard” European Commission - European Commission.
https://ec.europa.eu/info/research-and- innovation/statistics/performance-indicators/european-
innovation-scoreboard_en (accessed Mar. 14, 2022).

6. “Scimago Journal & Country Rank” https://www.scimagojr.com/ (accessed Mar. 14, 2022).

7. “Key Enabling Technologies (KETs)” https://knowledge4policy.ec.europa.eu/foresight/-
topic/accelerating-technological-change- hyperconnectivity/key-enabling-technologies-kets_en (ac-
cessed Mar. 14, 2022).

8. “All Science Journal Classification” Accessed: Mar. 14, 2022. [Online]. Available:
https://pg.edu.pl/documents/611754/75313317/asjc

9. “The Enterprise Knowledge Graph Platform | Stardog.” https://www.stardog.com/ (accessed Mar.
14, 2022).

10. “Protégé.” https://protege.stanford.edu/ (accessed Mar. 14, 2022).

11.D. Gasevic, D. Djuric, and V. Devedzic, Model Driven Architecture and Ontology Development.
2006. doi: 10.1007/3-540-32182-9.

12.“Schema.org” https://schema.org/ (accessed Mar. 14, 2022).

13. “DBpedia Spotlight - Shedding light on the web of documents.” https://www.dbpedia-spotlight.org/
(accessed Jan. 08, 2022).

14.Cellfie. Protégé Project, 2022. Accessed: Mar. 14, 2022. [Online]. Available:
https://github.com/protegeproject/cellfie-plugin

15. Poveda-Villalén, Maria, Asuncion Gémez-Pérez et al. “OOPS!: An on-line tool for ontology evalua-
tion.” IJSWIS 10.2 (2014): 7-34.

16. LauraCornei, LauraCornei/Onto. 2021. Accessed: Mar. 14, 2022. [Online]. Available:
https://github.com/LauraCornei/Onto

17.“IPC V.8 NACE REV.2 Concordance” Accessed: Mar. 14, 2022. [Online]. Available:
https://ec.europa.eu/eurostat/ramon/documents/IPC_NACE2_Version2_0_20150630.pdf

18. Augusto A, Conforti R, Dumas M, La Rosa M, Maggi FM, Marrella A, Mecella M, Soo A (2018) Au-
to-mated discovery of process models from event logs: review and benchmark. IEEE Trans Knowl
Data Eng 31(4):686-705

19. A multi-type semantic interaction and enhancement method for tax question understanding Volume
130, April 2023, 107783 https://doi.org/10.1016/j.engappai.2023.107783

20. BriskilalJ. et al. An ensemble model for classifying idioms and literal texts using BERT and RoB-
ERTa Inf. Process. Manage.(2022)

https://www.sciencedirect.com/journal/engineering-applications-of-artificial-intelligence/vol/130/suppl/C
https://www.sciencedirect.com/journal/engineering-applications-of-artificial-intelligence/vol/130/suppl/C
https://doi.org/10.1016/j.engappai.2023.107783
https://www.sciencedirect.com/science/article/pii/S0306457321002375
https://www.sciencedirect.com/science/article/pii/S0306457321002375

