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 Air pollution is a global issue affecting the health of people, the 

sustainability of the environment, and the planning of urban areas. The 

present work utilises a smart air quality data monitoring analysis system 

that uses machine learning algorithms in forecasting and studying 

atmospheric pollution concentration. Multi-pollutant forecasting in Ust-

Kamenogorsk utilises the collaborative use of LSTM and CNN. The 

Gaussian approximation is used in detecting outliers and meteorological 

input is added in order to support predictive precision. The LSTM-CNN 

blended model was utilized in predicting the concentration of different 

contaminants, including PM2.5, PM10, NO2, SO2, CO, and O3. The 

predictive accuracy of the model was average, considering its Root Mean 

Squared Error (RMSE) of 0.3297. Mean absolute error (MAE) was 0.2741, 

indicating differences in prediction ability among contaminants. 

However, R² score at -0.3210 suggests that the model needs to be tuned 

for greater predictability. Identification of outliers was done through 

residual analysis, which provided a 1.0 recall but poor precision of 0.0676, 

indicating high false positive rate. Despite its limitations, the model has 

the capacity to anticipate air quality in real time and detect anomalies. 

Future enhancements will include hyperparameter optimization, the 

addition of new data sources, and the refining of the anomaly detection 

method for greater accuracy and dependability. This contribution goes 

toward the development of intelligent air quality monitoring 

technologies to support data-driven environmental management and 

policy. 

Түйінді сөздер: 
 

ТҮЙІНДЕМЕ 

ауа сапасы, машиналық 

оқыту, атмосфераның 

ластануы, қоршаған 

ортаны бақылау, 

ауытқуларды анықтау. 

 Ауаның ластануы – адам денсаулығына, қоршаған ортаның 

тұрақтылығына және қалалық аумақтарды жоспарлауға әсер ететін 

жаһандық мәселе. Бұл жұмыста Өскемен атмосферасындағы 

ластаушы заттардың шоғырлануын болжау және зерттеу үшін 

машиналық оқыту алгоритмдерін (LSTM және CNN) пайдаланатын  
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  ауа сапасының мониторингі деректерін талдаудың зияткерлік 

жүйесі қарастырылады. Гаусс жуықтауы шығарындыларды анықтау 

үшін қолданылады және болжамның дәлдігін қолдау үшін 

метеорологиялық деректер қосылады. LSTM-CNN аралас моделі 

PM2.5, PM10, NO2, SO2, CO және O3 сияқты әртүрлі ластаушы 

заттардың шоғырлануын болжайды. Модельді болжау дәлдігі 

орташа, оның орташа квадраттық қателігі (RMSE) 0,3297, орташа 

абсолютті қателік (MAE) 0,2741, бұл болжамды деректердегі 

дәлсіздікті көрсетеді. Дегенмен, R2 -0.3210 көрсеткіші болжам 

дәлдігін жақсарту үшін модельді одан әрі реттеу қажет екенін 

көрсетеді. Шығарындыларды анықтау қалдықтарды талдау арқылы 

жүргізілді, ол 1,0 қайтарып алуды қамтамасыз етті, бірақ 0,0676 

дәлдігі төмен, бұл жалған позитивтердің жоғары пайызын көрсетеді. 

Шектеулерге қарамастан, модель нақты уақыт режимінде ауа 

сапасын болжауға және ауытқуларды анықтауға қабілетті. Әрі қарай 

жақсартулар гиперпараметрлерді оңтайландыруды, жаңа деректер 

көздерін қосуды және дәлдік пен сенімділікті арттыру үшін 

ауытқуларды анықтау әдісін нақтылауды қамтиды. Бұл мақала 

деректерге негізделген экологиялық менеджмент пен саясатты 

қолдау үшін ауа сапасын бақылаудың интеллектуалды 

технологияларын әзірлеуге бағытталған. 

Ключевые слова: 
 

АННОТАЦИЯ 

качество воздуха, 

машинное обучение, 

загрязнение атмосферы, 

мониторинг 

окружающей среды, 

обнаружение аномалий. 

 Загрязнение воздуха – глобальная проблема, влияющая на здоровье 

людей, устойчивость окружающей среды и планирование городских 

территорий. В данной работе рассматривается интеллектуальная 

система анализа данных мониторинга качества воздуха, использую-

щая алгоритмы машинного обучения (LSTM и CNN) для прогнози-

рования и изучения концентрации загрязняющих веществ в атмо-

сфере Усть-Каменогорска. Гауссова аппроксимация применяется 

для обнаружения выбросов, а метеорологические данные добав-

ляются для поддержки точности прогноза. Смешанная модель 

LSTM-CNN прогнозирует концентрацию различных загрязняющих 

веществ, включая PM2.5, PM10, NO2, SO2, CO и O3. Точность прогно-

зирования модели средняя, ее среднеквадратичная ошибка (RMSE) 

0,3297, средняя абсолютная ошибка (MAE) 0,2741, что указывает на 

неточность в предсказанных данных. Однако показатель R² -0,3210 

свидетельствует о том, что модель нуждается в дальнейшей настройке 

для повышения точности прогноза. Идентификация выбросов прово-

дилась с помощью анализа остатков, который обеспечил 1,0 отзыв, но 

низкую точность в 0,0676, что указывает на высокий процент ложных 

срабатываний. Несмотря на ограничения, модель способна прогно-

зировать качество воздуха в реальном времени и выявлять аномалии. 

Дальнейшие усовершенования будут включать оптимизацию гипер-

параметров, добавление новых источников данных и доработку 

метода обнаружения аномалий для повышения точности и надеж-

ности. Данная статья направлена на разработку интеллектуальных 

технологий мониторинга качества воздуха для поддержки 

экологического менеджмента и политики на основе данных. 

 

INTRODUCTION 

Air pollution is one of today's most pressing environmental challenges. Air quality should 

be evaluated and assessed on a regular basis to ensure better living circumstances. The US 

Environmental Protection Agency (EPA) uses the air quality index (AQI) to standardize air 
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quality. However, AQI demands precise and reliable sensor data as well as complicated 

calculations, which portable air quality measuring equipment cannot provide. Air pollution is a 

major environmental concern that affects millions of people throughout the world (Singh and 

Singh, 2017; Manisalidis et al. 2020). Increased industrialization and urbanization in the past 

decades have resulted in excessive emissions of air pollutants such as particulate matter (PM2.5, 

PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3) 

(Hoque et al. 2020; Meo et al. 2024; Meo et al. 2024). These air pollutants have serious health 

impacts, from respiratory and cardiovascular diseases to other chronic diseases. Further, air 

pollution speeds up environmental deterioration by altering climatic patterns and breaking down 

ecosystems. The need for reduced air pollution necessitates the development of advanced 

monitoring and forecasting systems that give policymakers and urban planners timely and 

accurate information. 

Traditional air quality monitoring is based on stationary sensor networks that collect 

information from various points (Mihaita et al. 2019). While these systems are able to offer 

location-specific pollution measurements, they are associated with many limitations including 

the need for extensive maintenance, spatially limited coverage, and the slowness of data 

processing. Historically, there are traditional forecast models based on statistical and regression-

based methods incapable of addressing complex inter-relationships among numerous different 

contaminants and weather indicators (Zhang et al. 2022). There is an interesting alternative 

presented by machine learning with the help of big data to discover complex patterns and 

enhance predictability accuracy (Qolomany et al. 2019; Ahmad et al. 2022). 

Development in artificial intelligence and machine learning over the past couple of years 

has made it possible to develop very complex models that can quite effectively predict air quality 

(Tien et al. 2022; Ma et al. 2019). Deep learning techniques, such as Long Short-Term Memory 

(LSTM) and Convolutional Neural Networks (CNN), have been found to perform well in the 

process of time-series analysis and spatial data feature extraction of pollution data. The work 

employs the synergy of sequence learning with LSTM and feature learning with CNN to create a 

cost-effective and scalable model for air quality monitoring. In addition to pollutant 

concentration estimation, the model employs anomaly detection techniques for identifying 

unexpected surges in pollution levels, hence improving air quality estimation accuracy. 

As a result of increased industrialization and urbanization, air pollution has become a 

serious issue necessitating effective and scalable monitoring strategies. Installing and 

maintaining conventional air quality monitoring stations is excessively expensive in most 

locations, particularly developing countries. Secondly, existing predictive techniques are 

rudimentary regression schemes that are devoid of the potential to capture the intricate 

spatiotemporal relationships of contaminants. With advancements in machine learning, in 

particular deep learning, it is now possible to use it to create data-driven predictive models to 

improve air quality monitoring and forecasting. 

The motivation behind this work is the requirement for an intelligent system not only to 

predict pollutant concentration but also to identify anomalies that can indicate spikes in pollution 

or sensor malfunction. The industrially polluted region of Ust-Kamenogorsk is an ideal case 

study to experiment with the techniques described above. The use of LSTM networks for learning 

temporal patterns and CNNs for feature learning improves predictability, whereas Gaussian 

approximation ensures robust anomaly detection. 

The research contribution presents a new hybrid model that maximizes multi-pollutant 

prediction by combining CNN for feature learning and LSTM for sequence modeling of time. The 

model improves its predictive accuracy and robustness by including climatic factors like 

temperature, humidity, wind speed, and atmospheric pressure. The research suggests an 

anomaly detection system that detects anomalies in the pollution pattern and sends an early 
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warning for unexpected air quality incidents. It is learned and tested on air quality records from 

Ust-Kamenogorsk, depicting its usability in real-world environmental monitoring. Performance 

of the model is compared by RMSE (0.3297), MAE (0.2741), and R² (-0.3210) to know where 

improvement would be needed. 

 

LITERATURE SURVEY 

Unnikrishnan and Rajeswari (2024) developed an ambient air pollution early warning 

system and a daily Air Quality Index (AQI) forecasting system over road networks. Their 

approach integrates a Gaussian dispersion model and a deep learning algorithm for modeling 

pollutant dispersion and predicting AQI values more accurately. The model effectively captures 

pollution dynamics caused by vehicle emissions and environmental factors. However, a key gap 

is the model's use of static emission rates and limited real-time traffic variability, which can 

undermine prediction robustness for dynamic traffic regimes. In addition, the model's scalability 

to larger and more complicated urban domains was not explored to the greatest degree. Future 

research should investigate adaptive models that use real-time traffic data, feature dynamic 

emission inventories, and test the system across a range of urban domains to provide enhanced 

reliability and generalization. 

Borah (2024) implemented a Deep Learning-Based Anomaly Detection Approach for Air 

Pollution Assessment. A deep learning approach was proposed for detecting anomalies in air 

quality monitoring. To detect spatiotemporal anomalies, we used a combination of CNNs and 

LSTM networks. The model has a 96% recall rate but has moderate false positive rates. Deep 

learning algorithms are capable of detecting air pollution anomalies. Real-time implementation 

is a significant computing difficulty. 

Wei et al. (2023): LSTM-Autoencoder-Based Anomaly Detection for Indoor Air Quality 

Time Series Data. I proposed an LSTM-Autoencoder model for detecting abnormalities in indoor 

air quality time-series data. Deep learning-based LSTM-Autoencoders were used for time series 

prediction. For air quality anomaly detection, we achieved an F1-score of 0.87. Deep learning 

approaches were demonstrated to be beneficial for detecting unanticipated pollution incidents. 

The anomalies identified were not interpretable, and they could not be explained. 

Nguyen et al. (2023) introduced an air pollution forecast model based on a Long Short-Term 

Memory Bayesian Neural Network (LSTM-BNN). The method combines the temporal sequential 

learning capability of LSTM networks and the Bayesian inference to produce point forecasts and 

uncertainty estimation. The method was implemented on actual air quality data and outperformed 

regular LSTM and deterministic models in forecasting accuracy and uncertainty estimation. 

Performance showed that LSTM-BNN performed better than benchmarks for pollutant 

concentration estimation such as PM2.5 and NO₂. Its most notable limitation stated was the 

tremendous computational cost using Bayesian neural networks, limiting real-time deployment. 

Future work must involve alleviating computational cost and exploration of light-weight Bayesian 

architecture to enable rapid and scalable deployment in real air quality sensing systems. 

El-Shafeiy et al. (2023) investigated real-time anomaly detection for water quality sensor 

monitoring using a multivariate deep learning technique. We proposed a deep learning approach 

for detecting anomalies in water quality sensors in real time. Used a multivariate LSTM-based 

anomaly detection framework. Accuracy in detecting anomalies exceeded 93%. Deep learning 

models were shown to be excellent at detecting anomalies in environmental monitoring. Applied 

to water quality monitoring, with little direct relevance to air pollution data. 

Gilik, Ogrenci, and Ozmen (2022) proposes a hybrid deep learning model combining 

Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks for air 

quality prediction. Spatial features are extracted using CNN, and temporal dependencies in the 

data are modeled using LSTM, achieving greater prediction accuracy compared to classical 
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machine learning and individual deep learning models. The method is tested on real datasets and 

performs better. However, one of the largest gaps in the research is the absence of detailed 

exploration of external influencing variables such as meteorological variables and sudden 

environmental events, which can significantly impact air quality but were not meaningfully 

integrated into the model. The applicability of the model across geographical locations is also 

untested. Future research must focus on incorporating larger-scale contextual information, 

enhancing the robustness of models to varying environmental conditions, and developing 

lightweight architectures that can be deployed in real time. 

Zhang, Han, Li, and Lam (2022) proposed Deep-AIR as a hybrid CNN-LSTM model for 

accurate forecasting and estimation of metro cities for air pollution and metro cities' air quality. 

The CNN identifies spatial features from heterogeneous city urban data, and the LSTM depicts 

temporal changes in air quality. The model was tested and trained on large data sets from a range 

of monitoring stations in urban areas, with both higher spatial resolution and accuracy than 

current models. Results showed that Deep-AIR was able to detect both local gradients of 

pollution and larger temporal trends. A significant limitation was that the model relied on dense 

sensor networks, so it was less well-suited for use in areas with low data coverage. Future studies 

need to concentrate on improving the generalization model using sparse data and applying 

transfer learning techniques in a bid to tailor the model to other diverse urban environments with 

limited retraining. 

Goh et al. (2021) created a real-time in-vehicle air quality monitoring system using a 

machine learning prediction algorithm. Created a real-time air quality monitoring system for 

vehicle applications. Machine learning regression techniques, such as Random Forest and 

Gradient Boosting, were used to estimate indoor vehicle air pollution concentrations. With an 

accuracy of 85%, the system correctly determined and predicted air pollution concentrations in 

automobiles. The researchers emphasized the importance of in-vehicle pollution monitoring, 

particularly for urban passengers. The data was limited to controlled studies in specific vehicle 

types, reducing its applicability to real-world driving settings. 

Jesus, G., Casimiro, A., & Oliveira (2021) Machine Learning for Reliable Outlier Detection 

in Environmental Monitoring Systems. We used machine learning to investigate outlier detection 

in air sensor pollution data. For detecting abnormal levels of pollution, Isolation Forest and One-

Class SVM were used. Outliers were detected in 95% of cases with few false positives. Machine 

learning was shown to be a solid method to distinguish sensor errors from true pollution 

anomalies. Multi-modal sensor data fusion and ensemble techniques were not investigated. 

Dai, Huang, Wang, Zeng, and Zhou (2021) introduced an air pollutant concentration 

predictive model, which is a combination of multi-scale one-dimensional Convolutional Neural 

Networks (CNN) and Long Short-Term Memory (LSTM) networks. Temporal and spatial 

patterns of air quality data are expected to be learned by the model. Spatial patterns of various 

scales are learned by multi-scale CNN, and temporal relationships are learned by LSTM. The 

method was applied to Xi'an, China, air quality observations with the primary pollutants like 

PM2.5 and PM10. The result indicated that the model introduced in this paper performed better 

than typical machine learning methods and isolated deep learning models. The study 

acknowledged limitations like the model's reliance on historical data without taking external 

dynamic variables like weather conditions and urban activities into consideration. Future studies 

should focus on incorporating real-time socio-economic and environmental data for further 

improvement in the performance of predictions and resilience. 

Zhang et al. (2019), Predictive Data Feature Exploration-Based Air Quality Prediction 

Method. To improve the precision of air quality prediction, we proposed a new feature selection 

technique. Combination of feature engineering and ensemble learning approaches. Improved air 

quality forecast precision by 12% compared to baseline models. Feature selection considerably 
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enhances the precision of predicted values in machine learning models. Computationally 

expensive, needing plenty of resources to train. 

 

SUMMARY OF LITERATURE 

Current machine learning-based air quality monitoring models are promising but have 

limitations, including the inability to handle intricate pollutant interactions, high computational 

cost, a lack of real-time deployment, and the inability to differentiate between real anomalies and 

sensor faults. Although deep learning models such as CNN and LSTM enhance accuracy, they 

are plagued by explainability and scalability problems. Generalizability is limited by the fact that 

many research concentrate on particular contaminants or indoor air quality. Furthermore, it can 

be challenging for anomaly detection methods to distinguish between real pollution incidents 

and sensor malfunctions. This study develops a scalable and interpretable CNN-LSTM-based 

model with Gaussian approximation for improved real-time anomaly detection and air quality 

prediction in order to get over these restrictions. 

 

MATERIAL AND METHODS  

The study makes use of meteorological factors including temperature, humidity, wind 

speed, and atmospheric pressure as well as air quality measurements for pollutants like PM2.5, 

PM10, NO2, SO2, CO, and O3 from monitoring stations in Ust-Kamenogorsk. The following is 

how the data is preprocessed. The CNN+LSTM Deep Learning workflow is shown in figure 1. 

 

 
 

Figure 1. CNN+LSTM workflow 

Note – compiled by the authors 

 

Normalization: Pollutant values between 0 and 1 are normalized using min-max scaling. 

Handling Missing Data: Linear interpolation is used to fill in missing numbers. 

Time-Series Structuring: To create sequences for model training, a sliding window 

procedure is used. 

CNN-LSTM with Gaussian Approximation Model Architecture 

The following are included in the hybrid model in the suggested work: 

CNN Layers: Use 1D convolutional layers to extract spatial information from air quality 

data. 

Long-term temporal relationships in pollution trends are captured by LSTM layers. 

Fully Connected Layers: Predict pollution with multiple outputs. 

Gaussian Approximation: Used to identify anomalies by looking at residual model 

prediction errors. 



 

- 175 - 

 

1-том, 3-нөмір, қыркүйек, 2025. 
Том 1, № 3, сентябрь 2025.  
Vol.1, No.3, September 2025.  

Algorithm 1: The model Used in the Study 

Input: Time series data on air quality is taken in by the input layer. 

Output: Performance Evaluation. 

Step 1: Start 

Step 2: Conv1D Layer: Acquires knowledge of spatial dependencies (64 filters, kernel size 

3, ReLU activation). 

Step 3: Additional spatial patterns are extracted by the Conv1D Layer (32 filters, kernel size 

3, ReLU activation). 

Step 4: Long-term dependencies in pollutant concentrations are modeled by the LSTM 

Layer (64 units). 

Step 5: Pollutant concentration forecasts are produced by the fully connected dense layer 

(6 units). 

Step 6: The Gaussian Approximation Layer calculates residuals in order to identify 

anomalies. 

Step 7: Stop 

 

Training and Evaluation of the Model. Mean Squared Error (MSE) is the training loss function. 

Adam is an optimization algorithm with a 0.001 learning rate. 

Model evaluation metrics include R2, Mean Absolute Error (MAE), and Root Mean 

Squared Error (RMSE). 

Evaluation of Anomaly Detection: F1-score, precision, and recall are used to gauge 

detection accuracy. 
 

RESULT AND DISCUSSION 

The CNN-LSTM hybrid model for air quality prediction is demonstrated in algorithm 1. 

An input layer that takes in a time-series data set of pollutant levels over time (24,6) is proposed. 

Short oscillations are identified with the assistance of the Conv1D layers, where spatial 

correlations between the air quality are learned from the data. The LSTM layer is best for 

predictions as it can capture long dependence on pollution rates. For various contaminants, the 

thick output layer produces multi-class predictions as displayed in Figure 2.  

 

 
Figure 2. Multi Pollutant Prediction 

Note – compiled by the authors 
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The 32,614 total parameters demonstrate the model's complexity without making it 

computationally expensive. By removing surprise deviations, the Gaussian Approximation is 

integrated into anomaly detection, improving reliability. This model efficiently captures 

geographical and temporal correlations in air quality data, a major improvement over 

conventional machine learning methods. Figure 3 displays the Training versus the Validation 

Loss Plot. 

 

 

Figure 3. Training and Validation Loss Plot 

Note – compiled by the authors 

 

Train loss (blue) and validation loss (orange) are shown against 50 epochs in the second 

graph, which displays the model's learning curve. The initial drop of the two lines indicates good 

learning. However, after about 15 epochs, there are indications of overfitting as the validation 

loss begins to rise while the train loss continues to fall. When a model overfits, it performs well 

on training data but poorly on fresh, unseen test data. Regularization strategies including early 

halting, dropout layers, and hyperparameter adjustment can help to lessen this problem. The 

model may be memorizing patterns instead of generalizing, which is a problem that requires 

more fine-tuning, as evidenced by the steady increase in validation loss. The Actual and predicted 

PM2.5 Level figure is shown in figure 4. 

 

 
 

Figure 4. Actual and Predict PM2.5 Levels 

Note – compiled by the authors 
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A comparison of the projected and actual PM2.5 levels is shown by this plot. The blue line 

represents the model's prediction, while the orange line represents the actual PM2.5 

measurement. Although the model typically tracks the trend of the real data, there are occasional 

peaks and troughs where it deviates. Moderate accuracy is indicated by the RMSE value of 0.3297 

and the MAE value of 0.2741. Conversely, negative R2 values (-0.3210) indicate that the model is 

poorly fitted and that adjustment is necessary. The variance in PM2.5 concentration is influenced 

by external environmental conditions, and accuracy can be improved by include more robust 

feature selection, such as wind speed or vehicle density. The DBSCAN clustering anomalies 

detection is shown in figure 5. 

 

 
 

Figure 5. Anomalies detected using DBSCAN Clustering 

Note – compiled by the authors 

 

The plot uses the DBSCAN clustering algorithm to exhibit the anomalies (purple dots) that 

were found. Extreme deviations were identified using residual analysis, which is calculated by 

subtracting the observed value from the anticipated value. Anomalies were three standard 

deviations from the mean residual value. To detect noise and group similar abnormalities, 

DBSCAN was employed. However, DBSCAN's efficacy was limited since either only one cluster 

was found or the outliers were categorized as noise. This suggests that either the data did not 

contain distinct anomaly patterns or the DBSCAN hyperparameters (min_samples and eps) were 

not properly configured. The model had a very high recall in properly identifying anomalies 

(recall = 1.0), but it also produced a large number of false positives, as evidenced by the poor F1-

score value of 0.0676 and low accuracy of 0.1342. More sophisticated techniques like autoencoders 

or isolation forests could be used to detect anomalies more effectively. 

 

DISCUSSION 

Pollutant concentrations such as PM2.5, PM10, NO2, SO2, CO, and O3 were predicted 

using the hybrid LSTM-CNN model. The following performance indicators were noted 

throughout the model's training and testing: 

1. Root Mean Squared Error (RMSE): The model's RMSE of 0.3297 indicated a moderate 

level of prediction error. Although this suggests that the model can accurately depict the pollutant 

concentration trend, it could be improved to lower the inaccuracy. 

2. MAE (Mean Absolute Error): The model's average prediction error is approximately 

27.4%, with an MAE of 0.2741. This shows that the model can estimate pollutant quantities, but 

it also shows that prediction accuracy varies throughout contaminants. 
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3. R2 (R-Squared): A score of -0.3210 for R2 suggests that the model does not match the test 

data adequately. R2 negative values typically indicate that the model's prediction is worse than 

the average of the actual values. This suggests that the model still need fine-tuning to improve 

prediction accuracy. 

4. Test Loss: With a test loss of 0.1087, the overall model loss is rather small, but it does 

highlight areas for performance improvement. 

 

KEY FINDINGS 

The growing validation loss indicates that to avoid overfitting, regularization techniques 

like dropout layers and early stopping must be used. 

Although it needs more accurate peak value projections, the CNN-LSTM model can 

identify pollution patterns. To reduce prediction errors, feature engineering may entail including 

more environmental variables. 

Reasonable anomaly segmentation could not be produced using DBSCAN clustering. 

Anomaly classification would be enhanced by additional techniques like hybrid models or 

dynamic thresholding. 

The model shows promise for monitoring air quality in real-time, but it needs to be 

optimized for application in different metropolitan locations. 

 

THREAT TO VALIDITY  

The validity of this study is threatened by issues with model development, statistical 

results, generalizability, and data dependability. Missing values and sensor errors compromise 

internal validity, while the data's spatial specificity restricts outward validity. Due to the 

underrepresentation of significant environmental variables, feature selection compromises 

construct validity. Overfitting and low precision (0.0676) in identifying anomalies put statistical 

validity at risk, increasing the likelihood of false positives. Validation is further limited by the 

absence of labeled anomaly data. Future research should focus on enhancing robust validation 

methods, feature selection, hyperparameter tweaking, and diverse datasets. 

 

CONCLUSION  

The study recommended developing a CNN-LSTM hybrid model for anomaly detection 

and air quality prediction that incorporates an in-painted Gaussian approximation. With a 

reasonable RMSE of 0.3297 and MAE of 0.2741, the model demonstrated efficacy in learning the 

trend of pollutants and may be used as a real-time air quality forecasting model. The model 

functioned well overall, despite the negative R2 (-0.3210) value suggesting room for improvement 

to boost prediction accuracy. The anomaly detection process based on DBSCAN clustering has a 

1.0 recall rate, a poor precision of 0.0676, and a significant rate of false positives. Overfitting was 

shown by the validation loss curve, indicating that while the model did well on training data, its 

generalization ability is still lacking. Despite these obstacles, this study presents data-driven 

strategies for reducing environmental pollution and aids in the development of machine 

learning-enhanced air quality monitoring systems. Future research should focus on using transfer 

learning and integrating additional environmental elements (such as traffic congestion and 

industrial toxins) to raise forecast accuracy to improve the system's efficiency and scalability as 

suggested. 

To strengthen the model and avoid overfitting, dropout layers, early halting, and 

hyperparameter adjustment are used. 
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