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Air pollution is a global issue affecting the health of people, the
sustainability of the environment, and the planning of urban areas. The
present work utilises a smart air quality data monitoring analysis system
that uses machine learning algorithms in forecasting and studying
atmospheric pollution concentration. Multi-pollutant forecasting in Ust-
Kamenogorsk utilises the collaborative use of LSTM and CNN. The
Gaussian approximation is used in detecting outliers and meteorological
input is added in order to support predictive precision. The LSTM-CNN
blended model was utilized in predicting the concentration of different
contaminants, including PM2.5, PM10, NOz, SOz, CO, and Os. The
predictive accuracy of the model was average, considering its Root Mean
Squared Error (RMSE) of 0.3297. Mean absolute error (MAE) was 0.2741,
indicating differences in prediction ability among contaminants.
However, R? score at -0.3210 suggests that the model needs to be tuned
for greater predictability. Identification of outliers was done through
residual analysis, which provided a 1.0 recall but poor precision of 0.0676,
indicating high false positive rate. Despite its limitations, the model has
the capacity to anticipate air quality in real time and detect anomalies.
Future enhancements will include hyperparameter optimization, the
addition of new data sources, and the refining of the anomaly detection
method for greater accuracy and dependability. This contribution goes
toward the development of intelligent air quality monitoring
technologies to support data-driven environmental management and

policy.

Tyiiinai cesaep:

TYNIHAEME

aya cartachl, MaIlyHaAbIK,
OKBITY, aTMOC(epaHbIH
AacTaHybl, KOpIlaraH
opTaHBbI OaKplaay,
aybITKyAapABl aHBIKTay.

AyaHBIH JacTaHybl — aJaM JeHCayABbIFbIHA, KOpIIaFaH OpPTaHBIH
TYPaKTHIABIFBIHA JK9He KadaAblK ayMaKTapAbl JKOCIlapAay¥a acep eTeTiH
kahanaplk Macese. bya >xympicta OckeMmeH aTMocdepachHAAFHI
AacTayIIbl 3aTTapAblH IIOFRIPAAHYBIH OO/AKay >KoHe 3epTTey YIIiH
MalllMHaABIK OKBITY aaroputMmaepid (LSTM xone CNN) narigaaaHaThiH


mailto:aurkumbaeva@edu.ektu.kz
https://orcid.org/0000-0002-2964-8260
https://orcid.org/0009-0005-0297-6044
https://orcid.org/0000-0002-1729-3343
https://orcid.org/0009-0008-9630-6448

1-tom, 3-Hemip, KpIpKYyIiek, 2025.

A. Cepik6: a J:t
m BecTHnk BKTY nm. [1. Cepnk6aeBa / - 170 - TOM 1, NQ 3, CeHT}[6pb 2025

D. Serikbayev EKTU Bulletin

Vol.1, No.3, September 2025.

aya camacblHBIH MOHMTOPMHIL JepeKkTepiH TaajayAblH 3UATKepAiK
Kylieci KapacTeIpblaaasl. I'aycc >KybIKTayhl IIbIFapbIHABLAAPABI aHBIKTAY
YIIH KOAJaHBLAaAbl >KoHe OOAKaMHBIH JdAJINiH KoaJday YIOiH
MeTeopOAOIMAABIK Aepekrep Kocblaaabl. LSTM-CNN apaaac mogeai
PM2.5, PM10, NOz, S5Oz, CO xene Os cHMAKTH 9pTyp4i AacTayIbl
3aTTapAblH IOFBIPAAHYBIH OoaXaiiasl. Mogeanai Goaxay Aeaairi
OpTallla, OHBIH OpTalla KBadpaTThK Kareairi (RMSE) 0,3297, opraria
abcoarorti Kateaik (MAE) 0,2741, ©ya OoaxaMABI JAepeKTepaeri
AdAcizaixTi kepceregi. Jerenmen, R? -0.3210 kepcerkimi 0Ooakam
AAAITIH KakcapTy YIIiH MOJeabAi OJaH api peTTey KaskeT eKeHiH
kopceteai. HIbrrapeiHAbLAaPABL aHBIKTAY KaAABIKTapAbl TalAay apKbLABI
Kyprisiaai, oa 1,0 kaittapsn aayAbl KaMTamaces eTti, Hipax 0,0676
AdA4iri ToMeH, Oya >KaAraH IIO3UTUBTEPAiH JKOFaphl IalibI3bIH KOpceTei.
IlexTeyaepre KapamacTaH, MOJAeAb HaKTBl YaKHT peXUMiHJge aya
camachIH OO/>Kay¥Fa >KoHe aybITKyAapAbl aHbIKTayFa KabiaeTTi. Opi kapaii
>KakcapTyadap ImiepliapaMeTrpaepai OHTalAaHABIPYAb]L, KaHa AepeKTep
KO3JepiH KOCyAbl >KoHe J244IK IIeH CeHiMAiAiKTI apTThIpy VIIiH
aybITKyJdapAbl aHBIKTay o4iCiH HaKTbldayabl KaMTuAbL bya maxaaa
AepeKTepre Heri3deAreH ®KOAOIMAABIK MeHeAXXMEHT IIeH CasiCaTTh
KoAJay YINiH aya carachlH  OaKblAayABIH — MHTeAAeKTyalAbl
TeXHOAOTUIAapBIH 93ipAeyre OarbITTaAFaH.

Karouessie caoBa:

AHHOTAIIVSA

KavyecTBO BO3AyXa,
MalllHHOe oOyJyeHue,
3arpsi3HeHne atMocgepsl,
MOHUTOPYHT
OKpY>KaloIllel Cpeasl,

oOHapy>keHIe aHOMaAUI.

3arpssHeHMe BO3Ayxa — rao0albHas1 Mpob.aeMa, BAUAIOmas Ha 340pOBbe
AT0€T, YCTOIIMBOCTH OKPY>KaIOIIell Cpebl U I1aHUPOBaHNe TOPOACKIX
Tepputopuil. B ganHoit paboTe paccMaTpuBaeTCsl MHTeAAeKTyaAbHasl
cicTeMa aHaAM3a JAaHHBIX MOHMTOPWHIA KavyecTBa BO3/AyXa, VCIIOAb3YIO-
mas aAropuTMbI MammuHoro obydenns (LSTM u CNN) aas mporaosn-
PpOBaHUA U M3ydeHMs KOHIIeHTpaI[uM 3arps3HAIOMINX BEIecTB B aTMO-
cdepe VYcrp-Kamenoropcka. I'ayccoBa ammmpokcuMariusl IpUMeHSETCs
Ads OOHapy>KeHIUs BHIOPOCOB, a MeTeopOoAOrMJecKye JaHHBIE J00aB-
ASIOTCA  AASL TIOAAEP>KKM TOYHOCTM IporHoda. CwemnaHHas MoJeAb
LSTM-CNN mnporHosupyeT KOHI[eHTPaI[UIO Pa3AMIHBIX 3arPA3HAIONTIX
semtecTs, BKaodyas PM2.5, PM10, NO2, SOz, CO u Os. TouHocTs IporHo-
3UPOBaHUS MOAEAU CpeAHss], ee cpeAHeKBaapaTidHas omunoka (RMSE)
0,3297, cpeanss abcoarotHas ommbOka (MAE) 0,2741, uyto ykaspiBaeT Ha
HETOYHOCTh B IIpejcKa3aHHBIX JaHHBIX. OgHako mokasatear R? -0,3210
CBIAETEABCTBYET O TOM, 4YTO MOAEAb HY>KAA€TCsI B AaAbHENIIIeN HaCTPOJIKe
AL TIOBBIIIIEHVsI TOYHOCTY ITPOTHO3a. VigeHTndukars BEIOpOCOB IIpoBo-
AVAACh C IIOMOIIIBIO aHAAM3a OCTATKOB, KOTOPEI odecrteuna 1,0 013518, HO
HIU3KYIO TOUHOCTD B 0,0676, 94TO yKasbplBaeT Ha BBICOKIIA IIPOLIEHT AOXKHBIX
cpabatpiBanmii. HecMoTpst Ha orpaHmyeHns], Mogeab CIIOCOOHa ITPOTHO-
3MpOBaTh Ka4eCcTBO BO3AyXa B peaabHOM BpeMeHM U BBIABAATH aHOMaAWNL.
JaapHeiile ycopepllleHOBaHMS OyAyT BKAIOYAaTh ONTUMMU3ALINIO TUIIep-
IapaMeTpoB, J400aBAeHNe HOBBIX MCTOYHMKOB JAHHBIX U A0PabOTKY
MeToJa OOHapy>KeHNs aHOMAaAuii AAs TTOBBIINEHNs TOYHOCTU UM HaAeXX-
HocTU. /aHHasl cTaThsl HallpaBAeHa Ha pa3palOOTKy MHTeAAeKTyaAbHBIX
TeXHOAOTMII MOHWMTOPMHIA KadecTBa BO3AyXa A4S TIOAAEPKKIU
9DKOAO0TUIECKOIO MeHeAKMeHTa U IIOAUTUKY Ha OCHOBE AaHHBIX.

INTRODUCTION

Air pollution is one of today's most pressing environmental challenges. Air quality should
be evaluated and assessed on a regular basis to ensure better living circumstances. The US
Environmental Protection Agency (EPA) uses the air quality index (AQI) to standardize air
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quality. However, AQI demands precise and reliable sensor data as well as complicated
calculations, which portable air quality measuring equipment cannot provide. Air pollution is a
major environmental concern that affects millions of people throughout the world (Singh and
Singh, 2017; Manisalidis et al. 2020). Increased industrialization and urbanization in the past
decades have resulted in excessive emissions of air pollutants such as particulate matter (PM2.5,
PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3)
(Hoque et al. 2020; Meo et al. 2024; Meo et al. 2024). These air pollutants have serious health
impacts, from respiratory and cardiovascular diseases to other chronic diseases. Further, air
pollution speeds up environmental deterioration by altering climatic patterns and breaking down
ecosystems. The need for reduced air pollution necessitates the development of advanced
monitoring and forecasting systems that give policymakers and urban planners timely and
accurate information.

Traditional air quality monitoring is based on stationary sensor networks that collect
information from various points (Mihaita et al. 2019). While these systems are able to offer
location-specific pollution measurements, they are associated with many limitations including
the need for extensive maintenance, spatially limited coverage, and the slowness of data
processing. Historically, there are traditional forecast models based on statistical and regression-
based methods incapable of addressing complex inter-relationships among numerous different
contaminants and weather indicators (Zhang et al. 2022). There is an interesting alternative
presented by machine learning with the help of big data to discover complex patterns and
enhance predictability accuracy (Qolomany et al. 2019; Ahmad et al. 2022).

Development in artificial intelligence and machine learning over the past couple of years
has made it possible to develop very complex models that can quite effectively predict air quality
(Tien et al. 2022; Ma et al. 2019). Deep learning techniques, such as Long Short-Term Memory
(LSTM) and Convolutional Neural Networks (CNN), have been found to perform well in the
process of time-series analysis and spatial data feature extraction of pollution data. The work
employs the synergy of sequence learning with LSTM and feature learning with CNN to create a
cost-effective and scalable model for air quality monitoring. In addition to pollutant
concentration estimation, the model employs anomaly detection techniques for identifying
unexpected surges in pollution levels, hence improving air quality estimation accuracy.

As a result of increased industrialization and urbanization, air pollution has become a
serious issue necessitating effective and scalable monitoring strategies. Installing and
maintaining conventional air quality monitoring stations is excessively expensive in most
locations, particularly developing countries. Secondly, existing predictive techniques are
rudimentary regression schemes that are devoid of the potential to capture the intricate
spatiotemporal relationships of contaminants. With advancements in machine learning, in
particular deep learning, it is now possible to use it to create data-driven predictive models to
improve air quality monitoring and forecasting.

The motivation behind this work is the requirement for an intelligent system not only to
predict pollutant concentration but also to identify anomalies that can indicate spikes in pollution
or sensor malfunction. The industrially polluted region of Ust-Kamenogorsk is an ideal case
study to experiment with the techniques described above. The use of LSTM networks for learning
temporal patterns and CNNs for feature learning improves predictability, whereas Gaussian
approximation ensures robust anomaly detection.

The research contribution presents a new hybrid model that maximizes multi-pollutant
prediction by combining CNN for feature learning and LSTM for sequence modeling of time. The
model improves its predictive accuracy and robustness by including climatic factors like
temperature, humidity, wind speed, and atmospheric pressure. The research suggests an
anomaly detection system that detects anomalies in the pollution pattern and sends an early
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warning for unexpected air quality incidents. It is learned and tested on air quality records from
Ust-Kamenogorsk, depicting its usability in real-world environmental monitoring. Performance
of the model is compared by RMSE (0.3297), MAE (0.2741), and R? (-0.3210) to know where
improvement would be needed.

LITERATURE SURVEY

Unnikrishnan and Rajeswari (2024) developed an ambient air pollution early warning
system and a daily Air Quality Index (AQI) forecasting system over road networks. Their
approach integrates a Gaussian dispersion model and a deep learning algorithm for modeling
pollutant dispersion and predicting AQI values more accurately. The model effectively captures
pollution dynamics caused by vehicle emissions and environmental factors. However, a key gap
is the model's use of static emission rates and limited real-time traffic variability, which can
undermine prediction robustness for dynamic traffic regimes. In addition, the model's scalability
to larger and more complicated urban domains was not explored to the greatest degree. Future
research should investigate adaptive models that use real-time traffic data, feature dynamic
emission inventories, and test the system across a range of urban domains to provide enhanced
reliability and generalization.

Borah (2024) implemented a Deep Learning-Based Anomaly Detection Approach for Air
Pollution Assessment. A deep learning approach was proposed for detecting anomalies in air
quality monitoring. To detect spatiotemporal anomalies, we used a combination of CNNs and
LSTM networks. The model has a 96% recall rate but has moderate false positive rates. Deep
learning algorithms are capable of detecting air pollution anomalies. Real-time implementation
is a significant computing difficulty.

Wei et al. (2023): LSTM-Autoencoder-Based Anomaly Detection for Indoor Air Quality
Time Series Data. I proposed an LSTM-Autoencoder model for detecting abnormalities in indoor
air quality time-series data. Deep learning-based LSTM-Autoencoders were used for time series
prediction. For air quality anomaly detection, we achieved an F1-score of 0.87. Deep learning
approaches were demonstrated to be beneficial for detecting unanticipated pollution incidents.
The anomalies identified were not interpretable, and they could not be explained.

Nguyen et al. (2023) introduced an air pollution forecast model based on a Long Short-Term
Memory Bayesian Neural Network (LSTM-BNN). The method combines the temporal sequential
learning capability of LSTM networks and the Bayesian inference to produce point forecasts and
uncertainty estimation. The method was implemented on actual air quality data and outperformed
regular LSTM and deterministic models in forecasting accuracy and uncertainty estimation.
Performance showed that LSTM-BNN performed better than benchmarks for pollutant
concentration estimation such as PM2.5 and NO,. Its most notable limitation stated was the
tremendous computational cost using Bayesian neural networks, limiting real-time deployment.
Future work must involve alleviating computational cost and exploration of light-weight Bayesian
architecture to enable rapid and scalable deployment in real air quality sensing systems.

El-Shafeiy et al. (2023) investigated real-time anomaly detection for water quality sensor
monitoring using a multivariate deep learning technique. We proposed a deep learning approach
for detecting anomalies in water quality sensors in real time. Used a multivariate LSTM-based
anomaly detection framework. Accuracy in detecting anomalies exceeded 93%. Deep learning
models were shown to be excellent at detecting anomalies in environmental monitoring. Applied
to water quality monitoring, with little direct relevance to air pollution data.

Gilik, Ogrenci, and Ozmen (2022) proposes a hybrid deep learning model combining
Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks for air
quality prediction. Spatial features are extracted using CNN, and temporal dependencies in the
data are modeled using LSTM, achieving greater prediction accuracy compared to classical
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machine learning and individual deep learning models. The method is tested on real datasets and
performs better. However, one of the largest gaps in the research is the absence of detailed
exploration of external influencing variables such as meteorological variables and sudden
environmental events, which can significantly impact air quality but were not meaningfully
integrated into the model. The applicability of the model across geographical locations is also
untested. Future research must focus on incorporating larger-scale contextual information,
enhancing the robustness of models to varying environmental conditions, and developing
lightweight architectures that can be deployed in real time.

Zhang, Han, Li, and Lam (2022) proposed Deep-AIR as a hybrid CNN-LSTM model for
accurate forecasting and estimation of metro cities for air pollution and metro cities' air quality.
The CNN identifies spatial features from heterogeneous city urban data, and the LSTM depicts
temporal changes in air quality. The model was tested and trained on large data sets from a range
of monitoring stations in urban areas, with both higher spatial resolution and accuracy than
current models. Results showed that Deep-AIR was able to detect both local gradients of
pollution and larger temporal trends. A significant limitation was that the model relied on dense
sensor networks, so it was less well-suited for use in areas with low data coverage. Future studies
need to concentrate on improving the generalization model using sparse data and applying
transfer learning techniques in a bid to tailor the model to other diverse urban environments with
limited retraining.

Goh et al. (2021) created a real-time in-vehicle air quality monitoring system using a
machine learning prediction algorithm. Created a real-time air quality monitoring system for
vehicle applications. Machine learning regression techniques, such as Random Forest and
Gradient Boosting, were used to estimate indoor vehicle air pollution concentrations. With an
accuracy of 85%, the system correctly determined and predicted air pollution concentrations in
automobiles. The researchers emphasized the importance of in-vehicle pollution monitoring,
particularly for urban passengers. The data was limited to controlled studies in specific vehicle
types, reducing its applicability to real-world driving settings.

Jesus, G., Casimiro, A., & Oliveira (2021) Machine Learning for Reliable Outlier Detection
in Environmental Monitoring Systems. We used machine learning to investigate outlier detection
in air sensor pollution data. For detecting abnormal levels of pollution, Isolation Forest and One-
Class SVM were used. Outliers were detected in 95% of cases with few false positives. Machine
learning was shown to be a solid method to distinguish sensor errors from true pollution
anomalies. Multi-modal sensor data fusion and ensemble techniques were not investigated.

Dai, Huang, Wang, Zeng, and Zhou (2021) introduced an air pollutant concentration
predictive model, which is a combination of multi-scale one-dimensional Convolutional Neural
Networks (CNN) and Long Short-Term Memory (LSTM) networks. Temporal and spatial
patterns of air quality data are expected to be learned by the model. Spatial patterns of various
scales are learned by multi-scale CNN, and temporal relationships are learned by LSTM. The
method was applied to Xi'an, China, air quality observations with the primary pollutants like
PM2.5 and PM10. The result indicated that the model introduced in this paper performed better
than typical machine learning methods and isolated deep learning models. The study
acknowledged limitations like the model's reliance on historical data without taking external
dynamic variables like weather conditions and urban activities into consideration. Future studies
should focus on incorporating real-time socio-economic and environmental data for further
improvement in the performance of predictions and resilience.

Zhang et al. (2019), Predictive Data Feature Exploration-Based Air Quality Prediction
Method. To improve the precision of air quality prediction, we proposed a new feature selection
technique. Combination of feature engineering and ensemble learning approaches. Improved air
quality forecast precision by 12% compared to baseline models. Feature selection considerably
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enhances the precision of predicted values in machine learning models. Computationally
expensive, needing plenty of resources to train.

SUMMARY OF LITERATURE

Current machine learning-based air quality monitoring models are promising but have
limitations, including the inability to handle intricate pollutant interactions, high computational
cost, a lack of real-time deployment, and the inability to differentiate between real anomalies and
sensor faults. Although deep learning models such as CNN and LSTM enhance accuracy, they
are plagued by explainability and scalability problems. Generalizability is limited by the fact that
many research concentrate on particular contaminants or indoor air quality. Furthermore, it can
be challenging for anomaly detection methods to distinguish between real pollution incidents
and sensor malfunctions. This study develops a scalable and interpretable CNN-LSTM-based
model with Gaussian approximation for improved real-time anomaly detection and air quality
prediction in order to get over these restrictions.

MATERIAL AND METHODS

The study makes use of meteorological factors including temperature, humidity, wind
speed, and atmospheric pressure as well as air quality measurements for pollutants like PM2.5,
PM10, NO2, SO2, CO, and O3 from monitoring stations in Ust-Kamenogorsk. The following is
how the data is preprocessed. The CNN+LSTM Deep Learning workflow is shown in figure 1.

., o

= Layer
Layer |
v

Input
Dataset

Fully
LSTM N LSTM | Comn Display
Layer Layer ected Qutput
Layer

Figure 1. CNN+LSTM workflow
Note — compiled by the authors

Normalization: Pollutant values between 0 and 1 are normalized using min-max scaling.

Handling Missing Data: Linear interpolation is used to fill in missing numbers.

Time-Series Structuring: To create sequences for model training, a sliding window
procedure is used.

CNN-LSTM with Gaussian Approximation Model Architecture

The following are included in the hybrid model in the suggested work:

CNN Layers: Use 1D convolutional layers to extract spatial information from air quality
data.

Long-term temporal relationships in pollution trends are captured by LSTM layers.

Fully Connected Layers: Predict pollution with multiple outputs.

Gaussian Approximation: Used to identify anomalies by looking at residual model
prediction errors.
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Algorithm 1: The model Used in the Study
Input: Time series data on air quality is taken in by the input layer.
Output: Performance Evaluation.

Step 1: Start

Step 2: ConvlD Layer: Acquires knowledge of spatial dependencies (64 filters, kernel size
3, ReLU activation).

Step 3: Additional spatial patterns are extracted by the Conv1D Layer (32 filters, kernel size
3, ReLU activation).

Step 4: Long-term dependencies in pollutant concentrations are modeled by the LSTM
Layer (64 units).

Step 5: Pollutant concentration forecasts are produced by the fully connected dense layer
(6 units).

Step 6: The Gaussian Approximation Layer calculates residuals in order to identify
anomalies.

Step 7: Stop

Training and Evaluation of the Model. Mean Squared Error (MSE) is the training loss function.

Adam is an optimization algorithm with a 0.001 learning rate.

Model evaluation metrics include R2, Mean Absolute Error (MAE), and Root Mean
Squared Error (RMSE).

Evaluation of Anomaly Detection: Fl-score, precision, and recall are used to gauge
detection accuracy.

RESULT AND DISCUSSION

The CNN-LSTM hybrid model for air quality prediction is demonstrated in algorithm 1.
An input layer that takes in a time-series data set of pollutant levels over time (24,6) is proposed.
Short oscillations are identified with the assistance of the ConvlD layers, where spatial
correlations between the air quality are learned from the data. The LSTM layer is best for
predictions as it can capture long dependence on pollution rates. For various contaminants, the
thick output layer produces multi-class predictions as displayed in Figure 2.
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Total params: 32 614 (127.40 KB)
Trainable params: 32 614 (127.40 KB)|
Non-trainable params: 0 (0.00 B)
Figure 2. Multi Pollutant Prediction
Note — compiled by the authors
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The 32,614 total parameters demonstrate the model's complexity without making it
computationally expensive. By removing surprise deviations, the Gaussian Approximation is
integrated into anomaly detection, improving reliability. This model efficiently captures
geographical and temporal correlations in air quality data, a major improvement over
conventional machine learning methods. Figure 3 displays the Training versus the Validation
Loss Plot.

0.11 4

0.10

0.09

0.08 -

0.07 A
—— Train Loss
—— Validation Loss

0 10 20 30 a0 50
Figure 3. Training and Validation Loss Plot
Note — compiled by the authors

Train loss (blue) and validation loss (orange) are shown against 50 epochs in the second
graph, which displays the model's learning curve. The initial drop of the two lines indicates good
learning. However, after about 15 epochs, there are indications of overfitting as the validation
loss begins to rise while the train loss continues to fall. When a model overfits, it performs well
on training data but poorly on fresh, unseen test data. Regularization strategies including early
halting, dropout layers, and hyperparameter adjustment can help to lessen this problem. The
model may be memorizing patterns instead of generalizing, which is a problem that requires
more fine-tuning, as evidenced by the steady increase in validation loss. The Actual and predicted
PM2.5 Level figure is shown in figure 4.

121 —— Actual PM2.5
- Predicted PM2.5
1.0 -

0.8 1
i
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Figure 4. Actual and Predict PM2.5 Levels
Note — compiled by the authors
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A comparison of the projected and actual PM2.5 levels is shown by this plot. The blue line
represents the model's prediction, while the orange line represents the actual PM2.5
measurement. Although the model typically tracks the trend of the real data, there are occasional
peaks and troughs where it deviates. Moderate accuracy is indicated by the RMSE value of 0.3297
and the MAE value of 0.2741. Conversely, negative R2 values (-0.3210) indicate that the model is
poorly fitted and that adjustment is necessary. The variance in PM2.5 concentration is influenced
by external environmental conditions, and accuracy can be improved by include more robust
feature selection, such as wind speed or vehicle density. The DBSCAN clustering anomalies
detection is shown in figure 5.

Anomalies Detected and Clusters (DBSCAN)
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Figure 5. Anomalies detected using DBSCAN Clustering
Note — compiled by the authors

The plot uses the DBSCAN clustering algorithm to exhibit the anomalies (purple dots) that
were found. Extreme deviations were identified using residual analysis, which is calculated by
subtracting the observed value from the anticipated value. Anomalies were three standard
deviations from the mean residual value. To detect noise and group similar abnormalities,
DBSCAN was employed. However, DBSCAN's efficacy was limited since either only one cluster
was found or the outliers were categorized as noise. This suggests that either the data did not
contain distinct anomaly patterns or the DBSCAN hyperparameters (min_samples and eps) were
not properly configured. The model had a very high recall in properly identifying anomalies
(recall = 1.0), but it also produced a large number of false positives, as evidenced by the poor F1-
score value of 0.0676 and low accuracy of 0.1342. More sophisticated techniques like autoencoders
or isolation forests could be used to detect anomalies more effectively.

DISCUSSION

Pollutant concentrations such as PM2.5, PM10, NO2, SO2, CO, and O3 were predicted
using the hybrid LSTM-CNN model. The following performance indicators were noted
throughout the model's training and testing:

1. Root Mean Squared Error (RMSE): The model's RMSE of 0.3297 indicated a moderate
level of prediction error. Although this suggests that the model can accurately depict the pollutant
concentration trend, it could be improved to lower the inaccuracy.

2. MAE (Mean Absolute Error): The model's average prediction error is approximately
27.4%, with an MAE of 0.2741. This shows that the model can estimate pollutant quantities, but
it also shows that prediction accuracy varies throughout contaminants.
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3. R? (R-Squared): A score of -0.3210 for R? suggests that the model does not match the test
data adequately. R? negative values typically indicate that the model's prediction is worse than
the average of the actual values. This suggests that the model still need fine-tuning to improve
prediction accuracy.

4. Test Loss: With a test loss of 0.1087, the overall model loss is rather small, but it does
highlight areas for performance improvement.

KEY FINDINGS

The growing validation loss indicates that to avoid overfitting, regularization techniques
like dropout layers and early stopping must be used.

Although it needs more accurate peak value projections, the CNN-LSTM model can
identify pollution patterns. To reduce prediction errors, feature engineering may entail including
more environmental variables.

Reasonable anomaly segmentation could not be produced using DBSCAN clustering.
Anomaly classification would be enhanced by additional techniques like hybrid models or
dynamic thresholding.

The model shows promise for monitoring air quality in real-time, but it needs to be
optimized for application in different metropolitan locations.

THREAT TO VALIDITY

The validity of this study is threatened by issues with model development, statistical
results, generalizability, and data dependability. Missing values and sensor errors compromise
internal validity, while the data's spatial specificity restricts outward validity. Due to the
underrepresentation of significant environmental variables, feature selection compromises
construct validity. Overfitting and low precision (0.0676) in identifying anomalies put statistical
validity at risk, increasing the likelihood of false positives. Validation is further limited by the
absence of labeled anomaly data. Future research should focus on enhancing robust validation
methods, feature selection, hyperparameter tweaking, and diverse datasets.

CONCLUSION

The study recommended developing a CNN-LSTM hybrid model for anomaly detection
and air quality prediction that incorporates an in-painted Gaussian approximation. With a
reasonable RMSE of 0.3297 and MAE of 0.2741, the model demonstrated efficacy in learning the
trend of pollutants and may be used as a real-time air quality forecasting model. The model
functioned well overall, despite the negative R2 (-0.3210) value suggesting room for improvement
to boost prediction accuracy. The anomaly detection process based on DBSCAN clustering has a
1.0 recall rate, a poor precision of 0.0676, and a significant rate of false positives. Overfitting was
shown by the validation loss curve, indicating that while the model did well on training data, its
generalization ability is still lacking. Despite these obstacles, this study presents data-driven
strategies for reducing environmental pollution and aids in the development of machine
learning-enhanced air quality monitoring systems. Future research should focus on using transfer
learning and integrating additional environmental elements (such as traffic congestion and
industrial toxins) to raise forecast accuracy to improve the system's efficiency and scalability as
suggested.

To strengthen the model and avoid overfitting, dropout layers, early halting, and
hyperparameter adjustment are used.
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